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ABSTRACT 

 

In 2020 pedestrians accounted for 21,4% of all deaths in the European Union. Considering all vulnerable road 

users (VRU: pedestrians, cyclists, motorcycles, and mopeds) they accounted for 51,4% of all deaths. To reduce 

the number of deaths and improve VRU safety, systems have been developed in the last decades. The 

autonomous emergency braking system (AEB) is one of these systems and aims to intervene in conflict 

situations by applying an emergency braking (in some cases only after the driver starts the brake itself). The 

performance evaluation of an AEB system via simulation reduces cost and time against real tests and allows 

better robustness evaluation because of the higher number of scenarios that can be simulated. In the virtual-

world, safety-critical situations can also be tested without any problems. The modeling of pedestrian behavior 

plays an important role since the pedestrian is the vehicle's adversary in this context. Current studies use a 

simple pedestrian model, in which the pedestrian does not have any perception of the environment, moving on a 

pre-defined path with constant speed. Such trajectory-based models are available in the most common vehicle 

dynamic simulation tools. In reality, however, pedestrian usually react to the approaching vehicle in conflict 

situations by adjusting their trajectory, which can change the conflict situation and affect the performance 

assessment of AEB systems. This study compares the standard model with neuro-cognitive pedestrian model 

from cogniBIT and investigates if and how these models affect the performance assessment of AEB systems. 

INTRODUCTION 

 

Pedestrians are the road user group with the highest number of fatalities in Europe in 2021 with 51,4% of all 

fatalities [7]. Crashes involving pedestrians occur mainly, when pedestrians cross the road at undesignated 

cross-sections [16], [2]. In these situations, pedestrians change direction and speed generating paths with higher 

safety issues [14]. 

  

To protect pedestrians, the automotive industry has developed safety systems over the past decades. One of 

these is AEB-P, an active system that activates braking maneuver in detected critical situations, with the aim of 

preventing or reducing the severity of a collision [12]. Figure 1 shows the reduction in the number of deaths on 

German roads since driver assistance systems (ADAS), like AEB, have been implemented in vehicles. 
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Figure 1.  Fatalities on German roads since 1950 [12] 

 

The evaluation of the AEB-P follows standards set by regulatory and consumer protection organizations such as 

Euro NCAP [10]. In the Euro NCAP test protocol for autonomous emergency braking for pedestrians (AEB-P) 

the pedestrian is represented by a dummy, which moves in a straight line with constant speed. However, real 

traffic situations are more complex and pedestrian crossing behavior is influenced by multiple factors such as 

road infrastructure (distance from the crosswalk, presence of traffic lights, number of lanes etc.), traffic situation 

(speed and flow), psychological and physiological characteristics, among other factors [16], [3], [14], [18] and 

[21]. 

 

To improve pedestrian safety, the next generation of active safety systems must be able to anticipate critical 

situations. For this, understanding pedestrian behavior and intentions in complex traffic situations is essential. 

Since simulation is used during the early stages of the development of new systems, it is necessary to use more 

realistic pedestrian behavior models for traffic situations which will allow the creation of more realistic 

scenarios. 

 

This paper aims to evaluate a novel pedestrian behavior model for the evaluation of a generic autonomous 

pedestrian emergency braking system (AEB-P). First, we present a brief introduction to pedestrian behavior 

models and to the neuro-cognitive system architecture of the pedestrian model of CogniBiT (http://cognibit.ai). 

Next, the methods used to generate the scenarios and the metrics used to evaluate the performance of the AEB-P 

system are presented. Finally, the results are presented and discussed. 

OVERVIEW PEDESTRIAN BEHAVIOR MODEL 

 

The pedestrian model for use in simulations concerning ADAS falls into the category of microscopic models, 

since each pedestrian is modeled individually. [22], [6], [17], [23] present and discuss different microscopic 

pedestrian models. However, for the most part, the models do not consider intrinsic aspects of pedestrian 

behavior such as emotional state and intentions, and the influence of road infrastructure. 

 

Commercial software also uses a simplified pedestrian model, in which the pedestrian follows a given trajectory, 

also called trajectory-based model. The pedestrian does not interact with the environment and does not consider 

other agents in its movement. In CARLA Driving Simulation the default pedestrian, used to populate the scene, 

walks randomly without considering other agents, which also cannot be considered a realistic model of 

pedestrian behavior.  There are also commercial models that use other methods and can be integrated into third-

party software. One promising approach uses Machine Learning, where the model is trained based on real data 

to reproduce pedestrian behavior in a specific scenario [11]. The approach looks promising but faces some 

limitations regarding scalability, once for each new scenario the model needs to be trained again. 

  

A novel approach models the human cognitive process and will be referred to in this paper as the cognitive 

behavior model. The model is based on studies of pedestrian behavior and movement and reproduces the 

http://cognibit.ai/
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cognitive decision-making process of humans. Since it is not based on a specific scenario, the model can be 

applied in different traffic situations.  

 

NEURO-COGNITIVE PEDESTRIAN BEHAVIOR MODEL 

 

The neuro-cognitive pedestrian behavior model developed by cogniBIT is based on the so-called cogniBOT 

system architecture, (see Figure 2). Pedestrian behavior in complex traffic situations results from a sequence of 

processes that take place in the central nervous system. The model divides this process into three major parts. 

The first stage of information processing is visual perception, representing how humans acquire information 

from their surroundings. The Cognition creates an internal representation of the outside world. Finally, in the 

motoric action stage a decision is made and translated into a desired trajectory and the corresponding control 

signals. These signals are fed back to a pedestrian locomotion model, resulting in a closed-loop interaction with 

the simulation environment. 

 

 
Figure 2. The cogniBOT  neuro-cognitive system architecture 

 

The model considers different aspects of human sensorimotor information processing and their limitations 

focusing on the application in complex traffic situations.  

 

Visual Perception Sensory perception describes the intake of information from the environment, with the focus 

on visual perception in the simulation of traffic participants. The cogniBOT system architecture simulates 

relevant limitations of human road users, for example a restricted field of vision, which is compensated by eye 

movements. The simulated eye movements are controlled by a complex attention process that takes into account 

both top-down signals, such as the currently intended action, and bottom-up signals, for instance due to the 

recognition of other traffic participants in the peripheral field of vision.  

 

Cognition The information recorded in the perception modules is used to create an internal representation of the 

external world. Considering the objects that have been recognized, the cogniBOT AI architecture draws on 

previously identified information about the type, position and speed of other road users, as well as the internal 

map of the road course, to create a context-specific prediction from this information.  

 

Motoric Action The prediction of the situation forms the basis for decision making of the simulated traffic 

participant. For this purpose, the cogniBOT AI architecture implements a cost function that allows the simulated 

agent to make a trade-off for each traffic situation between speedy progress, distance to other road users, and the 

risk of an accident. Based on this decision, a desired trajectory is planned and translated into motor signals. 

 

Emotions & Physiology Human perception, cognition and action are under the influence of emotions and 

physiological states. Some emotions such as anger can lead to riskier behavior. These aspects are also 

considered within the model mainly through the behavior profile passed into the model.  
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Model usage 

The user defines a starting position, a list of target destinations, initial and desired speed, and a behavior profile. 

It is possible to integrate a vehicle to be tested (VUT) or other external models of traffic participants into the 

simulation. 

 

cogniBIT’s models are stochastic as they simulate physiological processes such as perception and cognition 

which are probabilistic in nature. This allows automatic generation of variations of the same initial scene by 

different selection of the random seed. At the same time, cogniBIT’s models are fully deterministic in the sense 

that exactly the same simulation results are reproduced when initial conditions and random seed are identical. 

 

Behavior profile 

Pedestrian behavior has many aspects that influences it, like age, emotional state and cultural background as 

internal aspects and traffic rules, surrounding traffic, road infrastructure and weather conditions as external ones. 

The behavior profile allows to define different types of behavior based on the intrinsic aspects, which in turn 

influence how the pedestrian interacts with his or her surroundings, the extrinsic aspects. 

 

The behavior profile has five different parameters that can be defined by the user. The parameters are ‘physical 

limitations’, ‘level of activity’, ‘rule adversity’, ‘cautiousness’, and ‘aggressivity’. Depending on the 

combination of these parameters, profiles ranging from very prudent and cautious to extremely risky and 

careless behavior can be generated.  

 

Each parameter influences the pedestrian behavior differently. ‘Physical limitations’ simulates, for example, 

limitations caused by aging, handicap or intoxication and affects perceptive, cognitive, and motor skills. ‘Level 

of activity’ affects decision making and attention primarily. ‘Rule adversity’, along with ‘cautiousness’, are the 

parameters that most define pedestrian crossing behavior. Whereas the former defines the level of respecting 

traffic rules and signs, the latter rather refers to avoiding conflict situations with other traffic participants when 

jaywalking. The level of ‘aggressivity’ affects pedestrian-pedestrian interaction [15]. 

METHODS 

 

The evaluation of ADAS and in vehicle safety system can be carried out in different ways. The method applied 

in this paper is based on [1], [20] and the ISO PDTR 21934 norm. The evaluation process consists of four main 

steps: (1) identification of the relevant traffic situations, (2) establishment of the baseline (3) establishment of 

the modified scenario, where the safety system is applied to the baseline and (4) the comparison of the results. 

 

Relevant traffic situation 

The relevant traffic situation represents the situation of interest where the application of the safety system could 

potentially be beneficial. According to ISO PDTR 21934, such situations can be derived from crash data 

analysis, naturalistic driving studies or from previous knowledge from technology development. As the focus of 

this paper is to evaluate the performance of the AEB-P system, scenarios involving the pedestrian were 

considered as relevant ones. The tests applied by Euro NCAP are already derived from crash data analysis, so 

the scenario chosen in this paper is also based on the Euro NCAP tests. Using the ISO PDTR 21934 

nomenclature, the relevant scenario for this paper is Straight Crossing Path, pedestrian from right (SCPpr), 

where the car is moving forward, and the pedestrian is crossing the path from right. 

 

Figure 3 represents the baseline scenario. The road has 2 lanes and at one end, on the right side of the 

pedestrians' starting position, a signalized cross-section. 
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Figure 3.  Relevant traffic situation. 

(𝑥𝑣 , 𝑦𝑣) is the vehicle start position, (𝑥𝑝 , 𝑦𝑝) the pedestrian start position and (𝑥𝑔𝑜𝑎𝑙_𝑝, 𝑦𝑔𝑜𝑎𝑙_𝑝) the pedestrian 

goal destination. The black dotted line indicates the direction of the pedestrian's movement. And the blue dotted 

line indicates the direction of movement of the vehicle. The distance between vehicle and pedestrian, 𝑑𝑥 ,which 

was varied for the generation of the scenarios, is the distance in the x direction (see Equation 1). 

 

𝑑𝑥 = 𝑥𝑝 − 𝑥𝑣     Equation (1) 

 

Baseline scenario 

To generate the baseline scenarios, it is necessary to define the road infrastructure, as well as the number and 

type of road users, their starting speeds, and the vehicle trajectory. Following a similar approach as presented in 

[20] a parameter called ‘initial vehicle waiting time’ was implemented. By varying these three parameters in a 

virtual environment the baseline scenarios were generated. The parameters used and their distribution are listed 

in Table 1. 

 
Table 1. 

Baseline Scenario Input Parameters 

 

Input name value step unit 

Vehicle speed [10, 60] 5 km/h 

Distance between vehicle 

and pedestrian 

[10, 30] 5 m 

Vehicle waiting time [0.0, 1.0] 0.5 s 

 

For a specific pedestrian behavior profile, 165 baseline scenarios were generated. In contrast to [20] the 

pedestrian trajectory was not predefined. Based on the pre-defined behavior profile and the specific situation, 

the neuro-cognitive pedestrian behavior model chooses a trajectory to reach the destination goal. The vehicle 

moves on a predefined trajectory. 

 

Modified scenario 

The modified situation is the baseline scenario, but with an AEB-P equipped vehicle. The AEB-P module 

contains two parts, an ideal sensor defined by a field of view and perception algorithm, and the braking module 

defined by time to collision (TTC), pedestrian detection status and braking profile. The used settings for the 

field of view are in Table 2, (see figure 4). When the pedestrian enters the field of view, the TTC is calculated 

(see equation 2).  

 

�⃗�𝑟𝑒𝑙  𝑇𝑇𝐶 =     𝑟𝑟𝑒𝑙             Equation (2) 

�⃗�𝑟𝑒𝑙 ≔  �⃗�𝑐𝑎𝑟 − �⃗�𝑝𝑒𝑑         Equation (3) 

𝑟𝑟𝑒𝑙 = 𝑟𝑝𝑒𝑑 − 𝑟𝑐𝑎𝑟             Equation (4)   

 

Where the �⃗�𝑟𝑒𝑙  represents the relative speed between vehicle and pedestrian, and 𝑟𝑟𝑒𝑙   the relative position, [11]. 

When the TTC is less than or equal to 1 s, the vehicle starts braking following the defined braking profile, (see 

figure 5 and table 3).  



 

 

__________________________________________________________________________________________ 

Fonseca Alexandre de Oliveira 6 

 

 
Figure 4. AEB Field of View [11] 

 

 

 

 

 

 

 

Table 2. 

 Field of view parameters. 

 

Parameter Value Unit 

Azimuth angle (α) 60 ° 

Range (r) 60  m 

 

The braking profile used here is the similar as in [20], (see figure 4). It is divided into three parts: system delay, 

build up time, the time needed to reach maximum deceleration and full brake. The deceleration increases 

linearly over time.  

 

 

Figure 5. AEB Braking profile [11] 

Table 3. 

 Braking profile settings. 

 

Parameter Value Unit 

Delay 0.2 s 

Build up time 0.4 s 

Maximal deceleration 0.9 g 

 

Safety Assessment 

After simulating the baseline scenarios and the modified scenarios with the AEB-P system, the results were 

compared. The metric used in this paper is the reduction in frontal collision cases due to the AEB-P system. 

Figure 6 shows an overview of the process.  
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Figure 6. Safety Assessment approach. 

 

Simulation Environment 

The choice of the platform used in this paper was based mainly on the integration with the pedestrian behavior 

model, support to OpenDrive file format and the quality of the 3D model, relevant for future studies. Therefore, 

open-source programs were prioritized. This paper uses the CARLA (Car Learning to Act) Driving Simulator 

platform, an open-source software built on top of Unreal Engine 4 (UE4) for autonomous car research, [9]. In 

CARLA vehicle dynamics is modeled using the standard UE4 vehicle model, PhysXVehicles, which is focused 

on the gaming market and is limited when compared to specific vehicle modeling software. But for the purpose 

of this paper, the model was sufficient. 

 

RESULTS 

 

Pedestrian Behavior model parameter analysis 

Different combinations of the parameters were evaluated in pairs in the scenario used to evaluate the AEB 

system in this paper. The parameters which were not being varied had the default value of 0. The evaluated 

parameters were varied with a step of 0.2, from 0 to 1. The initial conditions of the scenario are listed in table 4. 

 
Table 4. 

 Initial condition by the simulation for the behavior profile evaluation. 

 

Parameter Value Unit 

Vehicle initial speed 4 m/s 

Vehicle goal speed 10 m/s 

Distance to pedestrian 12 m 

 

Each combination of parameters was simulated with eleven different random seeds. The results were evaluated 

considering whether the pedestrian had a collision with the vehicle or not. For the second case there are two 

possible reasons, either the pedestrian waited at the curb for the vehicle to pass or the pedestrian managed to 

cross the road without being hit by the vehicle. The results were plotted on the diagrams present in figure 7. 

Each point has a color ranging from blue to red. The results for seed 1, which was used in the study of the AEB 

system, are available in appendices. 
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Figure 7. Pedestrian behavior profile parameter analyses. Dark blue means that in all cases the pedestrian was not hit by 

the vehicle, value of 0 on the scale, and dark red means that in all case there was a collision between the pedestrian and 

the vehicle, a value of 1 on the scale. 

 

As was to be expected, the parameters "rule adversity" together with "cautiousness" were the parameters with 

the greatest influence on collision rate. With rule adversity greater than or equal to 0.4, in all cases (rule 

adversity x physical limitation, rule adversity x level of activity, rule adversity x aggression) there were 

collisions between pedestrian and vehicle, once the pedestrian tried to cross the road without waiting at the curb. 

With “cautiousness” greater than 0.0 the pedestrian tends to wait at the curb, so in the cautiousness x rule 
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adversity graph, for cautiousness values above 0.2 there were no collisions. A cautious behavior profile also led 

the pedestrian to cross at designated cross-sections. 

 

Another parameter with greater relevance is physical limitations. The presence of hell blue dots was observed 

for values of physical limitations higher than 0.4, indicating that in some seeds there was a collision, see the 

diagrams physical limitations x aggression, level of activity x physical limitations and cautiousness x physical 

limitations. In these cases, the pedestrian chose to cross the road before the vehicle passed, but slowly due to the 

higher "physical limitations". In other seeds the pedestrian opted to wait at the curb, avoiding the collision. 

 

The combination cautiousness = 0.0, rule adversity = 1.0, physical limitations=1, aggression = 1 and level of 

activity = 1 is the combination that leads to the riskiest behavior in the analyzed scenario and was used in the 

simulations to evaluate the AEB.  

 

Using this setting, the neuro-cognitive model presented either one of the following behavioral patterns: 

 

1. walk to the curb, wait, and walk or run across the road in front of the vehicle. 

2. walk to the curb, wait, and walk or run across the road after the vehicle has passed. 

3. cross the road without waiting at the curb. 

 

In none of the above cases did the pedestrian use the crosswalk when crossing the road. 

 

Performance assessment of the AEB-P system 

A total of 165 cases were simulated, varying the initial distance between vehicle and pedestrian, vehicle initial 

speed, and vehicle waiting time. In 16 cases frontal collisions between vehicle and pedestrian occurred, which 

represents 9,7% of all cases. Of these 16 cases, 3 were prevented by the AEB-P system, which represents a 

reduction of 18.8%.  

 

The avoided collisions can be divided into two groups. In 2 cases the vehicle was able to stop completely and 

therefore avoided the collision. In 1 case, with the application of AEB-P, the vehicle reduced its speed, giving 

the pedestrian enough time to leave the conflict region before colliding with the vehicle.  

DISCUSSION 

 

In [20] the application of an AEB-P system reduced the collision rate by was 24.1%. In that study, however, the 

braking profile had a larger maximum deceleration of 7 𝑚/𝑠2 and a longer delay of 0.25 s. Other studies found 

collision reduction values ranging from 20% to above 50% [20], when using different approaches and virtual 

environments. [11] used a machine learning based pedestrian behavior model and found values between 19.4% 

to 38.8%, depending on the braking profile. The performance of 18.8% is slightly lower compared to previous 

results. However, this finding is unlikely to represent a significant difference due to the low number of positive 

test cases. Assuming that by using the neuro-cognitive model more valid simulation results are produced, the 

observed difference might indicate a lower performance of the AEB-P system in real life situations in 

comparison to previous simulations results.  

 

In contrast to previous studies, the neuro-cognitive pedestrian model varied the road crossing path as well as the 

walking speed, and often waited at the curb before crossing. The high value in behavioral variation has probably 

led to more false-negative assessments of the AEB-P system than in previous studies, where the pedestrian 

usually crossed the road in straight line without speed adjustment or waiting. 

 

The model also produced situations of a false-positive activation of the AEB-P system. In these cases, the 

system was activated by mistake as the pedestrian was just standing at the curb waiting. Such a situation is not 

atypical in everyday life, and activation of the system in these situations can lead to a low acceptance of the 

system by consumers. It therefore becomes obvious that active safety needs to interpret and predict the 

pedestrian's intentions in such situations. 

 

[18] analyzed pedestrian crossing behavior on different road infrastructure (number of lanes, designated and 

non-designated cross-sections), weather conditions, and gap between pedestrian and vehicle.  The main 

pedestrian reactions to the approaching vehicle were “stop”, “clear path”, “slow down”, “speed up”, “hand 

gesture” and “nod”. “Stop” and “clear path” behaviors can be considered as cautious collision avoidance 

strategies, and while "speed up" is representing greater rule compliance. Both behaviors were observed on the 
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neuro-cognitive behavior model. “Hand gesture” and “nod” represents explicit communication between 

pedestrian and vehicle and are not yet implemented in the model. A “step-back” behavior was disabled due to 

limitations of the avatar in the simulation environment to handle it. 

CONCLUSIONS AND FUTURE WORK 

 

This paper aimed to evaluate the performance of a generic AEB-P system using the cogniBIT's neuro-cognitive 

pedestrian behavior model. The novel model is able to reproduce more complex behaviors with less effort than 

the conventional trajectory-based models, commonly used in commercial tools.  

 

Of course, the study presented does not represent a complete evaluation of the neuro-cognitive pedestrian 

model. A more in-depth analysis evaluating for instance trajectories, gaze patterns, interactions should be 

considered in the future. The neuro-cognitive model in its current implementation is able to generate realistic 

pedestrian road crossing scenarios, but still limited in the types of pedestrian-vehicle interaction. By adding 

explicit and implicit communication mechanisms on both sides, pedestrians and driver [18] this limitation can 

be removed in the future.  
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Figure 8. Pedestrian behavior profile parameter analyses. Green means that in all cases the pedestrian waited the vehicle 

to pass, orange means the pedestrian tries to cross the road and reaches the other side of road without being hit by the 

vehicle and red means that in all case there was a collision between the pedestrian and the vehicle. 


