

Differentiable Constrained Imitation Learning for Robot Motion Planning and Control

Christopher Diehl, Janis Adamek, Martin Krüger, Frank Hoffmann, Torsten Bertram, TU Dortmund University, Germany

Problem: Constrained motion planning and control

Imitation Learning (IL)

- simple design
- scales with data
- constraints implicit

Optimal Control

- complex design
- explicit (hard)
- constraints

How can we harvest the synergies of both groups of approaches?

Differentiable Constrained Imitation Learning (DCIL)

Method extends ideas from Donti et al. [ICLR 2021] to the IL domain

Completion step: Complete sequence of controls (controls and states) using a to \mathbf{u}_N dynamics model (equality constraints)

Correction step: Corrects solution to also satisfy **inequality** constraints (e.g., lane boundaries, obstacles, traffic lights, control limits)

Loss:

 $\mathcal{L}_{\text{soft}} = \mathbf{d}(\mathbf{y}_{\text{GT}}, \hat{\mathbf{y}}) + \lambda_g \|\text{ReLU}(\boldsymbol{\alpha} \odot \mathbf{g}(\hat{\mathbf{y}}))\|_2 + \lambda_h \|\mathbf{h}(\hat{\mathbf{y}})\|_2$

distance measure

Federal Ministry for Economic Affairs and Climate Action

e tion	Infraction penalty	Collision layout	Red light infraction	Agent blocked	Outside of lane	Wrong lane
↑	[%], ↑	[#/Km], ↓	[#/Km], ↓	[#/Km], ↓	[#/Km], ↓	[#/Km], ↓
	95.65	1.44	0.42	525.00	0.06	5.73
	98.84	5.70	0.27	94.28	3.39	9.41
	98.94	1.40	0.11	6.90	0.00	8.85
	98.94	0.94	0.13	3.26	0.15	0.09
	100.00	0.35	0.00	0.00	0.00	0.21
	98.94	0.22	0.18	0.00	0.00	0.00

hard-constraint methods with theoretical guarantees • multi-agent formulation (Diehl et al. [ICML W., CoRL 2023]) Joint Trajectories Game Parameter Decoding **Energy Optimization** Weight Decodi Initial Strategy Decoding