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Abstract— Motion planning and control are crucial compo-
nents of robotics applications like automated driving. Here,
spatio-temporal hard constraints like system dynamics and
safety boundaries (e.g., obstacles) restrict the robot’s motions.
Direct methods from optimal control solve a constrained
optimization problem. However, in many applications finding
a proper cost function is inherently difficult because of the
weighting of partially conflicting objectives. On the other hand,
Imitation Learning (IL) methods such as Behavior Cloning (BC)
provide an intuitive framework for learning decision-making
from offline demonstrations and constitute a promising avenue
for planning and control in complex robot applications. Prior
work primarily relied on soft constraint approaches, which
use additional auxiliary loss terms describing the constraints.
However, catastrophic safety-critical failures might occur in
out-of-distribution (OOD) scenarios. This work integrates the
flexibility of IL with hard constraint handling in optimal
control. Our approach constitutes a general framework for
constraint robotic motion planning and control, as well as
traffic agent simulation, whereas we focus on mobile robot and
automated driving applications. Hard constraints are integrated
into the learning problem in a differentiable manner, via
explicit completion and gradient-based correction. Simulated
experiments of mobile robot navigation and automated driving
provide evidence for the performance of the proposed method.

I. INTRODUCTION

The motion of robots in the real world is constrained
by the kinematics and dynamics of the robot as well as
the geometric structure of the environment. For example, to
navigate safely and smoothly, a self-driving vehicle (SDV)
must consider various factors such as its control limits, stop
signs, and obstacles building a driving corridor. A core chal-
lenge is incorporating these constraints into robot planning
and control. That is also essential for automated driving
traffic simulation to enhance the realism of the simulated
agents. For instance, traffic agents must follow common road
rules. On the one side, optimal control approaches solve
a finite horizon optimal control problem by optimizing a
cost function under explicitly defined constraints. A common
approach, like in direct methods [1], is to derive a nonlinear
program from a continuous optimal control formulation [2],
[3], [4] and then solve the problem with numerical optimiza-
tion. However, designing a general cost function remains
an unsolved problem for inherently complex tasks such as
automated driving [5], [6], [7]. Here, aspects like comfort
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Fig. 1: A schematic overview of the proposed frame-
work: A robot, like an SDV, perceives its environment and
builds a high-dimensional environment model ei and a low-
dimensional state representation xi. Constraints Ci (grey
rectangle: equality constraints, blue ellipse: inequality con-
straints) further bound the robots motion. A neural network
Nθ processes ei and outputs an initial sequence of control
values uN . These are completed to the initial solution ȳ, also
containing the predicted states, by unrolling a robot dynamics
model. Afterward, ȳ is corrected with gradient steps (red
arrows), such that the estimated solution ŷ lies in the space
defined by equality (grey) and the inequality constraints
(blue) of Ci. During training, the framework computes a
distance measure between the ŷ and the ground truth yGT
and backpropagates the softloss Lsoft. During testing, the
approach delivers a solution that imitates the expert behavior,
while obeying a set of nonlinear constraints.

and safety must be weighed against each other. On the other
side, robot behavior can be learned from demonstrations,
which is the task of IL. One example is BC, a simple
offline learning method, requiring no on-policy environment
interactions. Here, constraints are implicitly learned from
data. Further, constraints can be integrated by auxiliary loss
functions. However, there are no guarantees for constraint
satisfaction, and robot policies fail under distribution shifts
[8], causing unexpected unsafe actions.

That raises the question: Can we combine offline IL
methods like BC with the constraint incorporation of optimal
control methods?

Donti et al. [9] present a method for incorporating hard
constraints into the training of neural networks. The problem
is formulated as a nonlinear program, and evaluated with
a simple network architecture. Our approach extends their
previous work to the robotic IL setting. The nonlinear
program is constructed via direct transcription. Our proposed
approach, summarized in Fig. 1, leverages two differentiable
procedures to account for equality and inequality constraints
and is agnostic to the used network architecture. First,
the network predicts a sequence of control vectors, which



are explicitly completed to a sequence of states w.r.t. the
system dynamics represented as equality constraints. Then, a
gradient-based correction accounts for inequality constraints
while satisfying the equality constraints.

Contributions. To summarize, the paper makes the fol-
lowing contributions: (i) It proposes a general Differentiable
Constraint Imitation Learning (DCIL) framework for incor-
porating constraints, which is agnostic to the particular neural
network architecture. (ii) It demonstrates the approach’s
effectiveness in one mobile robot and one automated driving
environment during closed-loop evaluation. The approach
outperforms multiple state-of-the art baselines considering
a variety of metrics.

II. RELATED WORK

The proposed approach is situated within the broader
scope integrating constraints into learning-based approaches
and IL in the robotics and automated driving literature. This
section classifies related work into two major categories.

Modification of the Training Loss. The first class of ap-
proaches incorporates constraints by modifying the training
loss. A simple approach adds the constraints as weighted
penalties to the imitation loss. [10] proposes an application
for automated driving. The work shows that additional loss
functions penalizing constraint violations improve the closed-
loop performance. [11] modifies the training process with a
primal-dual formulation and converts the constrained opti-
mization problem into an alternating min-max optimization
with Lagrangian variables. [12] uses an energy-based for-
mulation. During training, the loss pushes down the energy
of positive samples (close to the expert demonstration) and
pulls up the energy-values on negative samples, which violate
constraints (e.g., colliding trajectories). While these methods
are more robust to errors in constraint-specifications, they
often fail in OOD scenarios as errors made by the learned
model still compound over time. That can lead to unexpected
behavior like leaving the driving corridor [8].

Projection onto Feasible Sets. The second group of ap-
proaches projects the neural network’s output onto a solution
that is compliant with the constraints. Instead of predicting
a future sequence of states, a neural network predicts a
sequence of controls [13]. Unrolling a dynamics model
generates a feasible state trajectory consistent with the robot
system dynamics. However, the approach does not account
for general nonlinear inequality constraints. [14] presents an
inverse reinforcement learning approach. First, a set of safe
trajectories is sampled, and learning is only performed on
the safe samples. SafetyNet [15] trains an IL planner and
proposes a sampling-based fallback layer performing sanity
checks. [16] proposes a similar approach using quadratic
optimization. Other works incorporate quadratic programs
[17] or convex optimization programs [18] as an implicit
layer into neural network architectures. These approaches
constitute the last layer to project the output to a set of
feasible solutions. [19] directly modifies the network archi-
tecture by encoding convex polytopes. Sampling, quadratic

optimization and convexity severely restrict the solution
space.

Most closely related to our approach is the work of
[9]. The authors present a hybrid approach, which accounts
for nonconvex, nonlinear constraints. Experiments deal with
numerical examples with simple network architectures. We
extend this work to the real-world-oriented robot IL set-
ting with more complex architectures for high-dimensional
feature spaces. Further, we use an explicit completion by
unrolling a robot dynamics model.

Just recently, concurrent works propose approaches which
also incorporate nonlinear constraints using Signal Temporal
Logic [20] and differentiable control barrier functions [21],
which emphasizes the importance of using nonlinearities. In
contrast, our approach relies on a differentiable completion,
and gradient-based correction procedure, and the training
is guided by auxiliary losses. [20] evaluates on simple toy
examples, whereas our analysis considers a more realistic
environment. [21] evaluates in real-world experiments but
only use a circular robot footprint and object representa-
tion, whereas this work evaluates using different constraints.
Moreover, our approach is able to resolve incorrect con-
straints that render the problem infeasible.

III. PROBLEM FORMULATION

Assume robots dynamics described by nonlinear, time-
invariant differential equations with time t ∈ R, state x ∈ X
and controls u ∈ U ⊂ Rnu :

ẋ(t) = f
(
x(t),u(t)

)
. (1)

The state space size X of dimension nx is the union
of an arbitrary number of real spaces and non-Euclidean
rotation groups SO(2). In addition to the low-dimensional
state representation x, assume access to a high-dimensional
environment representation e ∈ E ⊂ Rne (e.g., a birds-
eye-view (BEV) image of the scene). Further, the system is
bounded by a set of nonlinear constraints C (e.g., by control
bounds, rules, or safety constraints).

A (sub-)optimal expert, pursuing a policy πexp, controls
the robot and generates a dataset D = {(xi,ui, ei,Ci)}Ii=0

with I ∈ N+ samples. A future trajectory of length H ∈ N+

containing states and controls belonging to sample i is given
by yGT =

[
xT
i ,u

T
i . . . ,x

T
i+H ,uT

i+H−1

]T
. During training, the

objective is to find the optimal parameters θ ∈ Rnθ under a
maximum likelihood estimation:

θ∗ = argmin
θ

E
[
d
(
yGT, ŷ

)]
, (2)

subject to equation (1) and the constraints C. The function
d denotes a distance measure and ŷ = πθ(xi, ei) is the
output of the function πθ parameterized by θ. Function πθ

is described by a neural network Nθ and the completion
fcompl and correction fcorr procedure. During inference, given
the environment representation, the robot’s goal is to predict
a sequence of states and controls compliant with the con-
straints. In the spirit of an model predictive control (MPC)
framework, the first control vector is applied or an underlying
tracking controller regulates the robot along the reference.



IV. CONSTRAINED IMITATION LEARNING SYNTHESIS

This section introduces the constrained IL framework.
We first show how to construct a nonlinear program (NLP)
per sample used for training the network. Afterwards, the
solution process is detailed. A general description of the
approach is visualized in Fig. 1.

A. Nonlinear Program Formulation

Direct transcription (see for example [1]) transforms the
time-continuous formulation of the constraints C and Equ.
(1) into a nonlinear program per sample. We discretize the
time interval of the future with length H with t0 ≤ t1 ≤
· · · ≤ tk ≤ · · · ≤ tH and k = 0, 1, . . . ,H . We assume
a piecewise constant control u(t) := uk = constant for t ∈
[tk, tk +∆t) , where ∆t = tk+1−tk for k = 0, 1, . . . ,H−1
denotes the time interval. The states at grid points tk are
described by x(tk) := xk for k = 0, 1, . . . ,H . The forward
differences

xk+1 = f(xk,uk) (3)

impose a set of equality constraints h(xk+1,xk,uk) = 0.
With a slight abuse of notation, we set x0 = xi, and at
t0 = ti. Note that index i denotes the measured variables in
the dataset, whereas index k describes the variables of the
constrained optimization problem (4). Further, inequalities
constraints g(xk,uk) ≤ 0 are constructed based on Ci and
are only evaluated at the discrete time steps for xk and uk.

The resulting NLP per sample is given:

min
ŷ

d
(
yGT, ŷ

)
subject to

(4)

h(xk+1,xk,uk) = 0, k = 0, 1, . . . ,H − 1

g(xk,uk) ≤ 0, k = 0, 1, . . . ,H − 1

g(xN ) ≤ 0,

with optimization vector ŷ =
[
xT
0,u

T
0 . . . ,x

T
H ,uT

H−1

]T
.

Remember that ŷ is a function of the parameters θ. Hence,
the complete procedure must be differentiable in order to
backpropagate the gradients. The next section will describe
such an approach using a modified version of [9].

B. Explicit Equality Completion

Instead of directly regressing a trajectory of future states,
it is a common practice [13] to output a sequence of control
vectors and unroll a differentiable dynamics model. That
is similar to the explicit completion procedure described
by [9]. To be precise, the neural network Nθ predicts a
sequence of control vectors uN . The sequence of states xN

is then computed by iteratively applying Equ. (3), starting
from the measured state xi, described by function xN =
fcompl(uN ,xi). The concatenation of both vectors results in
ȳ =

[
uT
N ,xT

N

]T

C. Inequality Correction

The completion process accounts for the equality con-
straints derived from the discretized robots system dynamics.
To further consider the inequality constraints, a differentiable
gradient-based correction procedure is applied [9]. Here, we
take gradient steps along the manifold of states and controls
satisfying the equality constraints towards a feasible region.

The gradient-based correction, described by function
fcorr(ȳ), is initialized by ȳ =

[
uT
N ,xT

N

]T
. The approach then

calculates the gradients of the inequality constraints w.r.t. the
sequence of control vectors uN and takes ngrad steps along
the gradients. With the learning rate γ ∈ R+ and abbreviating
fcompl(·) = fcompl(uN ,xi) formally the function is given by:

fcorr

([
uN

fcompl(·)

])
=

[
uN − γ∆uN

fcompl(·)− γ∆fcompl(·)

]
, (5)

with gradients

∆uN = ∇uN

∥∥∥∥ReLU(
α⊙ g

([
uN

fcompl(·)

]))∥∥∥∥2
2

, (6)

and
∆fcompl(·) =

∂fcompl(·)
∂uN

∆uN . (7)

Equ. (6) calculates the gradients of the inequality constraints
g (depended on uN and xN ). g is weighted by α ∈ Ra,
with ⊙ as the element-wise product. The norm is squared,
leading to a quadratic penalty for inequality violations [2].
The ReLU only activates the penalty when the inequality is
violated. For instance, the trajectory of an SDV not violating
the lane bounds should not be corrected. The solution of the
procedure1 is ŷ. The intuition is that the network provides
a good initialization that, if at all, violates the constraints
slightly. Afterward, fcorr(ȳ) corrects those initialization to
satisfy all inequality constraints, such as safety constraints,
e.g., lane boundaries. That procedure is similar to [22], which
produces an initial trajectory using sampling-based optimiza-
tion and fine-tunes it with gradient-based optimization. In
contrast, our initialization is learned.

D. Training and Inference

As already noticed by [9], the convergence of gradient-
based methods is not guaranteed and depends on initial-
ization. However, if initialized closed to an optimum these
methods are highly effective. The softloss for training2,

Lsoft = d
(
yGT, ŷ

)
+λg ∥ReLU (α⊙ g(ŷ))∥2+λh ∥h(ŷ)∥2 ,

(8)
enables a feasible or at least nearly feasible initial
solution, such that the inequality correction converges

1While fcorr respects the equality constraints h, it could lead to violations
of them. However, empirically, we found that penalizing h in Equ. (8) led
to mean equality violations in the order of 1e−5, which seems neglectable
in our application.

2The loss in Equ. (8) described in the paper of [9] squares the
norms of constraint violations. However, the official implementation
(https://github.com/locuslab/DC3) uses the same loss as in this work. The
authors of [9] verified that the mentioned implementation was used to
generate the results of their paper. As later discussed in Section V-E, loss
(8) also produced better results in our experiments.



during test time. λg ∈ R and λh ∈ R are
weighting factors. Algorithm 1 summarizes the approach.

Algorithm 1 Deep Constraint Imitation Learning

1: procedure DCIL(ei,xi)
2: compute initial sequence of controls uN = Nθ(ei)

3: complete to ȳ =
[
uT
N ,xT

N

]T
with fcompl(uN ,xi)

4: correct to estimated solution ŷ = fcorr(ȳ) (function
applied ngrad times)

5: if train then
6: compute loss (8) and update θ
7: else
8: return ŷ
9: end if

10: end procedure

V. EXPERIMENTAL EVALUATION

This section evaluates the proposed approach in one
mobile robot and one automated driving environment. This
section addresses the following research questions: Q1: Does
the approach improve the closed-loop performance of IL
methods? Q2: How does the approach deal with incorrect
constrain specifications?

Environments. The environments used for evaluation are
visualized in Fig. 2a) and b).

Mobile Robot Environment (MRE): In the first environ-
ment data is collected by controlling a mobile robot with
radius rrobot = 1m using the Dynamic Window Approach
[23]. The task during demonstrations is to navigate from
a random start to a random goal location in the shortest
time possible while avoiding collisions with circular shaped
obstacles. Objects are randomly located with varying radii
rc ∈ [0.1, 3]m. The dataset contains 838 episodes (69638
samples), which were spitted in 83.3% training, and 8.3%
validation and test each samples. This work evaluates closed-
loop on another 76 unseen test episodes.

Self-Driving Environment (SDE): The second environment
uses CARLA, a realistic automated driving simulator [24].
The CARLA Roach agent [25] collects training data. Further
additive noise is applied to make the demonstrations more
diverse, but sub-optimal. The dataset contains 120 episodes
(174275 samples) from Town01, using the same ratios as
in the MRE. We test on 25 random routes from a different
environment (Town02) using the scenarios of the CARLA
NoCrash-Challenge (Empty) [26] following the standardized
evaluation protocol of the CALRA leaderboard. The SDV’s
task it to follow the routes while avoiding collisions and
obeying traffic lights.

Baselines. This work benchmarks against the following
baselines. IL: The traditional imitation learning directly
regresses a future state trajectory. DKM: An IL approach
[13] predicting a sequence of control vectors bounded by a
sigmoid layer. The controls and a dynamics model are then
used to unroll a future state trajectory. DKM≤: DKM with an
additional gradient-based correction procedure only applied
during test time, similar to a fallback layer as in [15]. SL:
The same approach as IL trained using the softloss Lsoft.

That is similar to [10], but here the soft constraints are not
computed in image space.

Metrics. The MRE uses the following metrics: Goal
Reaching Rate (GRR): Rate of reached goals. Collision Rate
(CR): Rate of collision-prone episodes. Time: Percentage of
the agents completion time relative to the expert trajectory.
This metric measures efficiency. Kinematic Constraint Vi-
olations (KCV): Summed number of constraint violations
(tolerance: 1e−4) of velocity, angular velocity, acceleration,
and angular acceleration.

The SDE uses the metrics of the official CARLA Leader-
board Benchmark as described in [25]. We focus on closed-
loop metrics as open-loop metrics can be a poor indicator to
the actual task performance of robot policies [21].

A. Implementation

The method is agnostic and not restricted to the specific
design choices made here.

State and Controls. A robot-centric coordinate system
describes the state. MRE: The state x is defined by a 2-D
position with x, y ∈ R and ϕ ∈ SO(2). The robot controls
u are described by a forward v ∈ R and rotational velocity
ω ∈ R. During testing, the flatness property of the unicycle
model is used to compute the control values based on the
predicted state trajectory. One could also directly use the
predicted control values in a MPC formulation. However,
the IL baseline only predicts a state sequence. Therefore, for
a fair comparison, DCIL uses the same control strategy.

SDE: State x and controls u are the same as in [13]. Dur-
ing the evaluation, two PID controllers track the predicted
state sequence of all methods.

Inputs. In both environments the input of the neural net-
work ei constitutes of an image i ∈ Ra×b×c with resolution
res ∈ R and a measurement vector m ∈ Rnm , which is
a common representation in automated driving applications
[13], [7].

MRE: The robot centric image has dimensions a = b =
128 px with res = 10 px

m . One channel c = 1 describes the
binary occupancy information. m contains the current v and
ω. It is further described by the distance dgoal ∈ R and
heading θgoal ∈ SO(2) w.r.t. the goal point. The dimension
of the estimated control and state sequence ŷ, is defined by
H = 10 with time interval ∆t = 0.3 s.

SDE:: The image has dimensions a = b = 192 px with
res = 5 px

m . The SDV is centered in all images at 40 px
above the bottom. Different semantic classes from the work
of [25] are color coded using the RGB channels with c = 3
as visualized in 2c). m contains the current 2-D velocity
v ∈ R2, acceleration a ∈ R2, and current speed limit vmax.
We set H = 20 and ∆t = 0.2 s.

Constraints. MRE: For the dynamics, which constitute the
equality constraints, we use a unicycle model as in [27]. This
work applies box constraints such that v ∈ [−0.5, 1]m

s , ω ∈
[−0.70, 0.70] rad

s , a ∈ [−0.2, 0.2] m
s2 ,ω̇ ∈ [−0.70, 0.70] rad

s2 . The
acceleration a and angular acceleration ω̇ are computed from
finite differences. For collision avoidance, we compute eu-
clidean distances dobst between the robot and the obstacles, as
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Fig. 2: (a) Mobile robot environment. Red visualizes a demonstration trajectory navigating from the green start point to the
blue goal region, avoiding random obstacles (black). (b) Self-driving environment. (c) Network architecture in the SDE.

both footprints are circles. Then the state of every predicted
time step is constrained by dobst > rrobot +rc +0.1m. As the
algorithm requires a fixed number of constraints, it uses the
three closest obstacles in the front half level of the robot.

SDE: In the CARLA experiments, this work uses the
extended bicycle model for the dynamics (3) as [13] with
vehicle sizes of a Lincoln MKZ. We bound the velocity
by vmax = 8.33 m

s . Further the control accelerations are
constraint by a ∈ [−8, 4] m

s2 , and the control steering angles
by δ ∈ [−1, 1] rad. For collision avoidance, this work
constructs a polyline-based driving corridor as in [28] using
the high-level route. Four circles approximate the vehicle
footprint. At every gradient step, the algorithm estimates
the shortest distance to the left and right lane boundary for
every predicted time step k and every circle. Further logical
constraints for traffic lights are imposed. If a traffic light is
yellow or red, it constructs a stop line in front of the vehicle.
Otherwise, due to the required fixed number of constraints,
this line is created far away not affecting the correction step.
For the stop line and the driving corridor, the inequality
constraints are described as point-line distances. For a visual
example of the constraints refer to Fig. 2c).

Loss. MRE: Let subscriptˆdefine the estimated state and
control of y. Based on related work [13], losses are:

d
(
yGT, ŷ

)
=

H∑
k=1

(x̂k − xk,GT)
2 + (ŷk − yk,GT)

2

+
(
cos(ϕ̂k)− cos(ϕk,GT)

)2

+
(
sin(ϕ̂k)− sin(ϕk,GT)

)2

.

(9)
SDE: [29] showed that it its also beneficial to use an
regularization term in the form of a inverse dynamics model.
We follow this approach by adding the term to Equ. (9).

Network Architecture and Parameters. MRE: The bi-
nary image i is encoded by a LeNet [30] outputting a latent
vector, which is concatenated with the measurement vector
m. Afterwards, the result is processed by the same 2-layer
fully connected network (FCN) of [9]. The predicted control
sequence is bounded by a sigmoid layer and passed to the
completion and correction step. In both environments we
choose the hyperparameters by grid searches. In MRE we
choose: λg = λh = 0.5, α = 1.

SDE: A ResNet18 [31] first encodes the RGB image i
and the measurement vector m is encoded by a 1-layer
FCN . The concatenation of both encodings is passed to
the previously described 2-layer FCN. Fig. 2c) visualizes
the network architecture. In SDE we choose: λg = 5,

TABLE I: Closed-loop performance of all methods using
unseen test scenarios the in mobile robot environment.

Methode GRR CR Time KCV

[%], ↑ [%], ↓ [%], ↓ [% (#)], ↓

IL 100 3.94 106 7.20 (4600)
SL 92 6.57 117 2.06 (1317)

DCIL 100 0.00 105 0.12 (89)

λh = 5, λu = 1. Vector α is defined by weighting factors
for the different inequality constraints. Collision is weighted
by factor αc = 1, stopping line violations by αs = 2 and
bounds on kinematic values by αk = 1. Both experiments
use γ = 1e− 3 and ngrad = 5. For a fair comparison, we ran
grid searches for all baselines.

B. MRE Results

To answer Q1, DCIL is compared against the described
baselines. Table I visualizes the results. DCIL outperforms all
baselines in all metrics and it is the only one, which reaches
all goals and without any collisions. Moreover, compared to
the normal IL baseline, the number of kinematic constraint
violations is reduced by a factor of 51.69. A qualitative
comparison in an exemplary scenario is visualized in Fig.
3a). DCIL is the only method planning a collision-free
trajectory. This can be attributed to the correction procedure
acting as a safety layer.

C. SDE Results

Again considering question Q1, refer to the quantitative
comparison of Table II. Note that IL++ describes the same
approach as IL, but uses a PID controller which takes more
time to tune, such that the evaluation favors IL++. However,
DCIL performs best in the different metrics of the CARLA
leaderboard. We observed that the other baselines (IL, DKM,
SL) often plan trajectories, that divert from the route or
onto the opposite. That is explained by their behavior under
distribution shifts. Fig. 3c) illustrates such an qualitative
result using the IL method. The closed-loop metrics3 in Table
II also underline the described failures of the baselines.

Let us consider question Q2. In the CARLA experiments,
the bicycle model [13] is an approximation of the real
vehicle dynamics. However, it serves as an inductive bias,

3The closed-loop performance also depends on the underlying tracking
controller. Even if the planned trajectory obeys all constraints, an inadequate
PID controller could lead to lane boundary violations or red light infractions.
For instance, DCIL violates one red traffic light.
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Fig. 3: Qualitative comparison. (a) Open-loop prediction results of the different methods in the MRE. (b) BEV input image
of the neural network representing in CARLA. White pixels denote the SDV, black static obstacles, dark grey the road, light
grey the route, and violet lane markings. Traffic lights are visualized by green or red color. The image is rotated by 90
degree (c) Constraint plot of the IL agent during closed-loop control. (d) DCIL during closed-loop control.
TABLE II: Closed-loop performance of all methods using unseen test routes in Town02 from CARLA-NoCrash. ↓ indicates
a lower number is better and ↑ vice versa. Bold numbers indicate the best results.

Sucess Driving Route Infraction Collision Red light Agent Outside Wrong
Methode rate score completion penalty layout infraction blocked of lane lane

[%], ↑ [%], ↑ [%], ↑ [%], ↑ [#/Km], ↓ [#/Km], ↓ [#/Km], ↓ [#/Km], ↓ [#/Km], ↓

IL 36 50.18 44 95.65 1.44 0.42 525.00 0.06 5.73
IL++ 52 62.33 80 98.84 5.70 0.27 94.28 3.39 9.41
DKM 76 76.69 92 98.94 1.40 0.11 6.90 0.00 8.85
DKM ≤ 76 87,66 96 98.94 0.94 0.13 3.26 0.15 0.09
SL 92 96.09 100 100.00 0.35 0.00 0.00 0.00 0.21

DCIL 96 97.40 100 98.94 0.22 0.18 0.00 0.00 0.00

simplifying the learning process, and enhancing general-
ization capabilities, as shown by the closed-loop results in
Table II. To further answer Q2, this work conducts another
experiment, in which the SDV is spawned onto the wrong
lane (Fig. 4b). Note that the SDV never encountered such
a situation during training, and hence this initial state is
entirely outside the manifold of the training data. That
situation could occur due to disturbances during driving
or because a parked vehicle blocks the lane. Here, some
hard constraint methods as [3] provide no solution at all,
as the initial state is already infeasible. However, DCIL is
robust w.r.t. incorrect specifications, softens the constraints
and leads the vehicle back onto the right lane (Fig. 4c).

D. Runtime

The experiments use a AMD Ryzen 9 5900X and a Nvidia
RTX 3090. Our non-optimized python implementation takes
on average 20.02ms in the MRE and 119.22ms in the SDE.
The runtime for the pure IL (SDE) is 37.20ms.

E. Discussion, Limitations and Future Work

This section discusses the limitations of the presented
work and gives an outlook on possible future directions.
First, many active constraints make the loss landscape chal-
lenging to optimize and the procedure can be trapped in local
minima. We observed that results of SL and DCIL get worse
(SDE: both methods’ driving score drops by about 15 %)
using the described squared loss of [9]. That can be explained
by the fact that the squared loss is more sensitive to outliers
and harder to optimize during training, especially in the SDE.
Hence we decided to use the non-squared loss of the official
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Fig. 4: Experiment, in which the SDV is spawned in an infea-
sible OOD state. (a) Camera image of the scene. (b) Initial
infeasible configuration at t = 0s. (c) DCIL successfully
leads the vehicle back to the right lane at t = 4s.

implementation [9] as mentioned in Section IV-D. Second,
we marginalize over agents and plan the constrained uni-
modal motion of a single vehicle. Future work should extend
the approach to constrained joint planning of multi-modal
futures with multiple agents, similar to [32], and evaluate
the resulting traffic simulation with real-world data [33].

VI. CONCLUSION

This work combined ideas from IL and optimal control for
motion planning and control. It accounts for constraints using
a differentiable completion and correction procedure. The
experiments revealed that our approach outperforms multiple
baselines in one mobile robot and one automated driving
environment, and can deal with infeasible initial states.
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