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Motivation
Problem: Constrained motion planning and control

“stay on the reute” “keep distances

Imitation Learning (IL) Optimal Control

 complex design

» constraints implicit

“do not cross the stopping

f Q How can we harvest the synergies of both
L groups of approaches?

Differentiable Constrained Imitation Learning (DCIL)
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Method extends ideas from Donti et al. [ICLR 2021] to the IL domain

step: Complete sequence of controls  to (controls and states) using a
dynamics model ( constraints) uneo Y

Correction step: Corrects solution | to also satisty constraints

(e.g., lane boundaries, obstacles, traffic lights, control limits)

Loss: Looft = d(yGT, Sf) + Ag ||ReLU (a © g(¥)) | + An [|B(¥)]]5

distance measure

~=_ tootherobjects”

Funded by
the European Union

NextGenerationEU

Supported by:

% Federal Ministry
for Economic Affairs

and Climate Action

on the basis of a decision
by the German Bundestag

Sucess  Driving Route Infraction  Collision Red light Agent Outside Wrong
Methode rate score completion penalty layout infraction blocked of lane lane

(71,1 [l 1 [70], 1 [%1.1  [#Km], | [#Km], | [#Km], | [#Km] | [#Km], |
IL 36 50.18 44 95.65 1.44 0.42 525.00 0.06 5.73
[L++ 52 62.33 80 98.84 5.70 0.27 94.28 3.39 9.41
DKM 76 76.69 92 98.94 1.40 0.11 6.90 0.00 8.85
DKM < 76 87,66 96 98.94 0.94 0.13 3.26 0.15 0.09
SL 92 96.09 100 100.00 0.35 0.00 0.00 0.00 0.21
DCIL 96 97.40 100 98.94 0.22 0.18 0.00 0.00 0.00
Methodle GRR  CR  Time KCV S nligessiol OBl

DKM: Deep Kinematic Models (Cui et al. [ICRA 2020])
(7], T [#L 4 [AL 4 [ &L DKM <: DKM + correction step only at test time

1L 100 3.94 106 7.20 (4600) (similar to SafetyNet, Vitelli et al. [ICRA 2022])
SL 92 6.57 117  2.06(1317) SL: IL + softloss (similar to ChaufferNet, M. Bansal etl al. [RSS2019])
DCIL 100 0.00 105 0.12 (89) GRR: goal-reaching rate, CR: collision rate, KCV: kinematic

constraint violations, SDV: self-driving vehicle
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q DCIL has better constraint satisfaction during closed-loop control
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Conclusion and Future Work

Conclusion: DCIL improves the
closed-loop performance but has
additional hyperparameters

Future work:
* hard-constraint methods with theoretical guarantees

« multi-agent formulation (Diehl et al. [[ICML W., CoRL 2023])
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