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Abstract— In autonomous driving tasks, scene understanding
is the first step towards predicting the future behavior of the
surrounding traffic participants. Yet, how to represent a given
scene and extract its features are still open research questions.
In this study, we propose a novel text-based representation
of traffic scenes and process it with a pre-trained language
encoder.

First, we show that text-based representations, combined
with classical rasterized image representations, lead to descrip-
tive scene embeddings. Second, we benchmark our predictions
on the nuScenes dataset and show significant improvements
compared to baselines. Third, we show in an ablation study
that a joint encoder of text and rasterized images outperforms
the individual encoders confirming that both representations
have their complementary strengths.

[. INTRODUCTION

Autonomous driving (AD) is a complex endeavor, which
involves multiple tasks. One such task is behavior prediction,
which deals with the problem of estimating future trajecto-
ries of the traffic participants surrounding the autonomous
vehicle. Behavior prediction is a crucial component of an
AD pipeline since it enables a number of downstream com-
ponents such as motion planning to generate safe trajectories
and avoid collisions.

On a different note, much progress has been made in
recent years on foundation models (FM). These are general
purpose models which are pre-trained on large scale data,
often in an unsupervised fashion, on a task that is agnostic
to any specific application. Within the domain of FMs, large
language models (LLM) are models that are pre-trained on
a large scale text corpus and whose pre-training task is to
predict the next token or randomly masked tokens within
a sequence. LLMs have received significant attention, since
they exhibit emergent capabilities. Despite their application
agnostic training objective, they can solve a wide range
of natural language processing (NLP) tasks in a zero/few
shot setting, e.g., via prompt engineering [26]. Due to their
versatility, LLMs have also been applied to fields outside of
NLP, such as time-series data [27] or tabular data [13].

FMs have also found their way into AD in the form of
neural simulators. These models use vision FMs to generate
sensor data for a fictitious traffic scene, allowing for simu-
lation of edge cases [28]. However, despite their popularity,
language models have, to the best of our knowledge, not
been applied as scene encoders for trajectory prediction
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tasks. We hypothesize that this is due to the inherently
complex nature of traffic scenes, which does not lend itself
to a text-based representation. And, unlike images, text is
not a common input (or output) modality in AD tasks.
Furthermore, practical challenges, such as limited context
length of language models, present additional obstacles.

In this work, we are the first to study the usage of text de-
scriptions combined with pre-trained language encoders for
the AD trajectory prediction task. Our descriptions contain
information about the agent state, its history and road lanes.
For the latter, a standard representation in form of polylines
does often not fit into a single prompt, and we propose
instead to encode their information in form of Bézier curves.
We evaluate our new approach on the nuScenes dataset [2]
resulting in two key observations:

1) We show that text descriptions combined with a pre-
trained language encoder provide a viable alternative
to rasterized images.

2) We show that image and text encoders have comple-
mentary strengths and a joint encoder outperforms its
individual counterparts.

Our study serves as a proof-of-concept, showing that AD
tasks can benefit from text-based representations. We antic-
ipate that our findings will trigger further research towards
more interpretable and expressive prediction models.

The remaining paper is structured as follows: In Sec-
tion [[I, we introduce CoverNet [19], the baseline trajectory
prediction model, which our architecture is based on. In Sec-
tions |I1I| and we introduce our novel model architecture
and the corresponding scene representation, respectively. In
Section |V| we empirically validate our approach. Finally, in
Sections [V and we summarize our results and give an
outlook on future work.

II. BACKGROUND

Our approach takes a standard trajectory prediction model,
CoverNet[19], and integrates pre-trained language encoders
into the model architecture. In the following, we provide fur-
ther background information on the CoverNet architecture.

A. CoverNet

CoverNet applies an encoder-decoder architecture that is
fed with an image representation of the scene, processes
it with a vision encoder backbone, and finally decodes the
targets from the learned representation.

Similar to previous vision-based works, e.g. [3], [4],
CoverNet encodes scenes into rasterized images which are
subsequently fed into a ResNet-50 [12] architecture, a widely
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Fig. 1: Flow of our Model. We encode the image that represents the rasterized scene and the text prompt with pre-trained
models dedicated for each modality. If both input sources are used, we afterwards concatenate their embeddings. The result
is fed into a decoder whose final layer picks the target trajectory from a pre generated trajectory set.

used variant of Convolutional Neural Networks (CNNs).
After extracting the feature map of an intermediate layer and
applying global pooling, the resulting embedding is concate-
nated with an agent state vector and propagated through a
series of dense layers in order to generate predictions.

The decoder treats the trajectory prediction task as a
classification problem. This is done by defining a set of
trajectory candidates /C from which the predicted trajectories
are picked. Such a set has to cover a wide range of possible
trajectories in order to contain a hypothesis that is close to
the ground-truth. At the same time, it is desired to keep
the set as small as possible in order to avoid making the
classification problem unnecessarily hard. An optimal cover-
set can be found by first defining a tolerance parameter € > 0,
and then searching for the minimal trajectory set K that
covers all trajectories from a predefined trajectory set X'
Vk € K,1 € K' : 6(k,l) < e, where ¢ is a metric that
quantifies the distance between two trajectories. While this
problem is in general NP-hard, the authors show that simple,
greedy solutions work well in practice [19].

III. MODEL ARCHITECTURE

Our model follows a standard encoder-decoder architec-
ture. We explore three options for encoders: image-based,
text-based and a joint encoder, which we present in Sec-
tions [[TI-A] [[T[-B] and [II[-C] respectively. For the decoder, we
follow the approach from CoverNet and treat the trajectory
prediction task as a classification problem. Figure [1| shows
an overview of our model architecture.

A. Image Encoder

The image encoder reduces the dimensionality of the high-
dimensional image input by extracting relevant information
into a lower-dimensional feature space. CoverNet relies on a
CNN-based encoder, which is the traditional model choice.

Since the focus of our research is to assess the performance
differences between the two input modalities image and text,

we further expand our study to transformer-based image en-
coders. Text-based encoders commonly employ transformers
and this strategic choice allows us a fair comparison between
the modalities that is not confounded by differences based
on architectures.

Vision Transformers (ViTs) [8] adapt the original Trans-
former architecture [24], which was initially designed for
language modeling tasks, to be applicable to images. This
allows ViTs to effectively process and represent image data,
challenging the conventional use of CNNs as the primary
image encoder [11]. ViTs divide the input image into smaller
patches, treating them as analogous to tokens in natural
language processing.

Bidirectional Encoder Image Transformer (BEiT) [1] is
a state-of-the-art ViT, which we chose for our experiments. It
is pre-trained on ImageNet [20] and its pretraining objective
involves reconstructing randomly masked image patches.

B. Text Encoder

The text encoder ingests a text-based representation of the
scene and outputs a scene embedding which is subsequently
decoded into a trajectory prediction. In order to achieve this,
a high-performance language model can be used. However,
the large size of state-of-the-art language models are chal-
lenging for fine-tuning since they do not fit into memory.
Hence, we select DistilBERT [21] for our experiments, which
is a slim variant of BERT [7] that does not suffer from this
issue.

BERT is a transformer-based language model pre-trained
via a masked language model objective, which requires the
model to predict randomly masked out input tokens [7].
In contrast to state-of-the-art pre-trained language models,
which typically use an autoregressive architecture, BERT
is bidirectional, i.e., every token can attend to both past
and future tokens. In addition, BERT already includes a
CLS token in its original formulation, which is a special
token prepended in front of every input sequence. Originally
intended for sentence classification, the CLS token offers a



convenient way for us to directly predict the target trajectory
out of a predefined trajectory set.

DistilBert is a variant of BERT optimized for inference
speed and model size. It is trained via knowledge distillation
from BERT and retains 97 % of BERT’s performance while
reducing model size by 40 % [21]. Although, DistilBERT
has been eclipsed in terms of performance by more recent
models, its reduced size allows us to fine-tune the model
for our trajectory prediction tasks on a single GPU without
resorting to any specialized techniques. All variants of our
architecture which process text-based input use DistilBERT.

C. Joint Encoder

Given that the image and text encoders possess comple-
mentary strengths, we hypothesize that a model combining
both encoders yields increased performance. In this work,
we build a joint encoder by stacking the embeddings of the
individual encoders. We leave more complex joint encoders
that process both input sources simultaneously as an exciting
topic of future work.

IV. SCENE REPRESENTATION

Next, we describe two different scene representations,
rasterized images in Section and text prompts in
Section While the rasterized image presentation is
routinely used for the AD prediction task, we are, to the
best of our knowledge, the first to propose a text-based scene
representation. Our description contains the state of the agent
for which predictions are made (target agent), its history and
lane information. Using a naive lane encoding exceeds the
standard context length, and we propose a more efficient
encoding based on Bézier curves instead.

A. Image Representation

We follow [19] to generate a rasterized image represen-
tation of the scene. The scene is presented as an RGB
image, where distinct colors are used to represent different
semantic categories, such as the drivable area and crosswalks.
To ensure consistent orientation, we rotate and translate the
image such that the target agent is positioned at a fixed pixel
location and its heading faces upwards. We use a resolution
of 0.1 meters per pixel and set the image height to 500 pixels
and its width to 500 pixels. The agent’s position is chosen
to allow observation of the scene with a range of 40 meters
ahead, 10 meters behind, and 25 meters to the left and right.

B. Text Representation

Our approach is to construct a prompt for a language
model which contains structured information about the traffic
scene and the target agent. Based on this prompt, the
language model generates an encoding of the traffic scene
which is used to predict the trajectory of the target agent
from a set of fixed trajectory candidates.

Information about the target agent include the type of
the vehicle, its current speed, acceleration, yaw rate and
past (x, y)-positions. Since the coordinate system is centered
around the current position of the target vehicle, the current

position is always at (0,0) and this information is left out
of the prompt.

In addition, we also include the following two components
from the agent’s environment: a representation of the current
lane the target agent is travelling on, and representations
of surrounding lanes that the target agent could potentially
switch to. We further explore the following two options for
lane representations: (i) a polyline representation where each
lane is discretized at a resolution of 1 meter and (ii) a more
compact representation based on Bézier curves that condense
the representation into a fixed number of control points.

Discretized Prompts contain lane information as a list
of (z,y)-positions representing points on the lane sampled
uniformly at 1 meter intervals. This polyline representation is
widely used by prediction algorithms working with vector-
ized map representations [9]. However, the resulting prompts
are on average 804 tokens long, and exceed the maximum
context length of our language encoder of 512 tokens for
92 % of all samples. Prompts that are too long are truncated
after 512 tokens, which leads to information loss, but allows
the model to process the input.

Bézier Prompts offer a more compact alternative to
discretized prompts. Here, the lane is encoded with Bézier
curves, which rely on a set of discrete control points in
order to generate parametric representations of smooth and
continuous curves [18]. In our experiments, we apply cubic
Bézier curves, which are defined by four control points, the
first and last of which coincide with the start and end point
of the lane. The remaining two control points determine the
curvature and direction and are fitted to minimize the mean-
squared error between the Bézier curve and the discretized
lane.

While not as widely used as the polyline representation,
this representation allows for significantly shorter prompts
(average length: 352) which, for all samples, fit into the
context length of the language model without truncation.
Figure [2| shows an example for a Bézier prompt.

V. EXPERIMENTS

Our experiments give a proof-of-concept that text encoders
provide meaningful representations of scenes. They comple-
ment image encoders, and their combination offers the best
of both worlds leading to superior performance.

A. nuScenes Dataset

We evaluate our approach on the publicly available
nuScenes dataset [2], which is a common benchmark dataset
in the autonomous driving community. This dataset consists
of 1,000 driving scenes recorded in Boston and Singapore.
Each scene is 20 seconds long and scenes are manually
selected in order to ensure diversity. The task is to predict
the next 6-seconds long future trajectories based on its and
neighboring agents’ 2-seconds history and map information.

B. Model Architectures

Unimodal architectures use only a single input source.
We contrast the performance of image-based encoders



You are an expert self-driving-car model, that can predict the future trajectory for a given vehicle, while also incorporating its current and past states, its
current and possible future lanes and also information about other vehicles, pedestrians, drivable areas and other important sets of features.

Task:
Please predict the future trajectory for the given vehicle for the next 6 seconds, from a set number of fixed trajectories.

Context Information:

The 2D coordinate system (x,y) is from the prediction vehicle’s own frame of view. Lane information is encoded as the 4 control points of a cubic Bezier
curve. The first and last control point match with the beginning and end of the lane.
Prediction Vehicle:

Category: vehicle.car

Current Speed: 6.28[m/s]

Current Acceleration: 1.26[m/s?]

Current Yaw rate: 0.67[27/s]

Past (x,y) positions in meters, sampled at 2 Hertz:

Time[s] x[m] y[m]

-2.0 0.36 -11.63

-1.50.27 -8.8

-1.0 0.19 -5.97

-0.5 0.09 -3.15

Current Lane Information (Bezier curve, as explained above):
X[m] y[m]

0.54 -19.47

0.53 -6.59

0.27 6.32

-0.23 19.19

Possible Outgoing Lane Information (Bezier curve, as explained above):
x[m] y[m]

-0.23 19.19

-0.71 29.89

-0.62 40.59

-0.98 51.29

x[m] y[m]

Predicted trajectory number:

Fig. 2: Example Prompt. Our prompt contains information about the agent state, its history and lane information. We use
a compact lane encoding with the help of Bézier curves.

Method Image Text #Modes | minADE; minADEs minADE;p MissRate;  MissRates  MissRate;g ~ minFDE;
Constant velocity & yaw 4.61 4.61 4.61 0.91 0.91 0.91 11.21
Physics oracle 3.70 3.70 3.70 0.88 0.88 0.88 9.09
CoverNet (32M) v 64 5.16 241 2.18 N/A 0.92 N/A 10.84
CoverNet (34M) v 415 5.07 2.31 1.76 N/A 0.83 N/A 10.62
CoverNet (41M) v 2206 541 2.62 1.92 N/A 0.76 N/A 11.36
ResNet-50 (24M) v 64 5.07 2.56 2.20 0.95 0.92 0.92 10.61
ResNet-50 (24M) v 415 4.80 245 1.86 0.94 0.82 0.76 10.18
ResNet-50 (28M) v 2206 5.31 2.80 2.11 0.93 0.76 0.64 11.22
ResNet-152 (58M) v 64 4.86 247 2.17 0.95 0.92 0.92 10.15
ResNet-152 (59M) v 415 4.51 2.33 1.80 0.93 0.81 0.76 9.57
ResNet-152 (63M) v 2206 4.72 2.58 1.94 0.93 0.75 0.63 10.05
BEIiT-B (86M) v 64 431 2.32 2.12 0.95 0.92 0.92 9.12
BEiT-B (86M) v 415 3.92 1.98 1.57 0.92 0.79 0.74 8.46
BEIiT-B (88M) v 2206 4.20 2.29 1.75 0.91 0.72 0.59 9.22
DistilBERT g; s¢r-. (67M) v 64 4.58 242 2.18 0.95 0.92 0.92 10.25
DistilBERT g; s¢r-. (67M) v 415 4.31 2.24 1.74 0.92 0.80 0.75 9.97
DistilBERT g; s¢r-. (69M) v 2206 4.86 2.80 2.11 0.91 0.70 0.57 11.30
DistilBERT (67M) v 64 4.45 2.39 2.16 0.95 0.92 0.92 9.94
DistilBERT (67M) v 415 4.23 2.20 1.70 0.93 0.80 0.75 9.81
DistilBERT (69M) v 2206 4.56 2.55 1.94 0.91 0.70 0.56 10.57
BEiT-B-DistilBERT (159M) v v 64 3.93 2.23 2.10 0.94 0.92 0.92 8.50
BEiT-B-DistilBERT (160M) v v 415 3.62 1.87 1.49 0.92 0.78 0.73 8.09
BEIT-B-DistilBERT (168M) v v 2206 3.73 2.00 1.53 0.90 0.66 0.52 8.41

TABLE I: Empirical Evaluation on nuScenes. Our experiments show that our joint model outperforms individual text and
image encoders, as well as baselines. Baselines are taken over from the CoverNet paper [19]. We highlight in bold the best
performing method for each category and metric. For all methods that build on the CoverNet decoder, we set the tolerance
parameter to € = 8,4, 2 leading to 64,412, 2206 modes (see Section [[). We provide in brackets the number of parameters.
Models with subscript discr. use discretized prompts with polyline lane representation.



(ResNet, BEIT-B) against text-based encoders (DistilIBERT)
with discretized (disc.) and Bézier prompts. We directly use
the Hugging Face Classifiers [25] in our implementation.

Joint architectures combine text and image as input. We
fuse the best-performing image encoder, BEiT-B, with our
text encoder, DistilBERT. Since the embeddings are frozen
during fine-tuning of the joint model, we add an intermediate
dense layer to blend the two modalities in the decoder.

Baselines consist of CoverNet [19] and the two physics-
based models from its paper.

C. Fine-Tuning

All models are initialized with pre-trained weights pro-
vided by Hugging Face [25] and fine-tuned on the nuScenes
training dataset [2]. Our unimodal architectures are fine-
tuned by optimizing all weights of the model simultaneously.

For the joint architecture, we freeze the fine-tuned weights
of both, the image and text encoders, only optimizing the
classification head.

We also conducted initial experiments with end-to-end
fine-tuning of both encoders, but this approach was outper-
formed by the frozen model. We think this behavior can be
explained by each modality having its own convergence rate
and shape, preventing them from converging simultaneously.
More complex training schemes will be explored in future
work.

For all experiments, we report the results based on a single
run. Within the run, we pick the best model based on the
validation loss.

D. Evaluation Metrics

We apply the standard evaluation metrics that are provided
in the nuScenes-devkit: minimum Average Displacement Er-
ror (minADEy,), Final Displacement Error (minFDEy), and
the miss rate over 2 meters, denoted as MissRate;. The
subscript & = {1,5,10} denotes the number of the most
probable predicted trajectories that are taken into account
for metric calculation. For all metrics, better performance is
associated with smaller values.

E. Empirical Analysis

We present our results in Table [I|

Images are commonly used to represent the scene in the
traffic forecasting domain. To ensure a fair comparison, we
reimplemented a simplified version of the CoverNet architec-
ture using directly the ResNet-50 classifier in Hugging Face.
Our simplified implementation achieves competitive results
to the results reported in the CoverNet paper. Moreover, we
observe that switching from ResNet-50 (the backbone used
in [19]) to ResNet-152 further improves the predictive per-
formance. These results are in line with the original ResNet
publication [12], which also reports that model performance
increases with depth.

Next, we switch the ResNet backbone with BEIT. BEiT, a
state-of-the-art vision Transformer architecture, demonstrates
better predictive performance compared to ResNet. Both,
ResNet and BEiT are pre-trained on the ImageNet dataset

[20]. We believe that this performance gain can be attributed
to the attention mechanism of BEiT, which enables it to
extract more expressive features. This ultimately leads to
improved generalization behavior.

Text was, in contrast to the image format, not used in
prior work for scene representation. Comparing the two dif-
ferent prompts, we observe that Bézier prompts outperform
discretized prompts which can be most likely explained by
the fact that the discretized prompts are truncated for 92%
of all samples, while the Bézier prompts always fit into the
context.

Comparing the text encoder with the image encoder,
we find that the best performing text-based architecture
(DistilBERT with 2,206 modes) outperforms all image-
based architectures in terms of miss rate. Contrarily, the
best performing image-based architecture (BEiT-B with 415
modes) outperforms all text-based architectures in terms of
average and final displacement error. We find it remarkable
that using a text only encoder achieves comparable results
as the image-based encoder despite having less information
available. We hypothesize that text is more structured than
the image representation making it easier to extract informa-
tion. Furthermore, the inductive bias might be stronger for
the text encoder than the image encoder: we directly provide
outgoing lanes that can anchor the forecasts.

Joint representations, i.e., fusing text and image informa-
tion, offer the best predictive performance compared to using
a single modality only. This indicates that both modalities
have complementary strengths.

VI. SUMMARY

In this paper, we are the first to demonstrate the po-
tential of integrating pre-trained language models as text-
based input encoders for the AD trajectory prediction task.
Our experiments confirm that text encoders are a valuable
alternative to image encoders, and that joint encoders over
both modalities perform better than using a single encoder
in isolation.

While our experimental results are encouraging and our
joint model significantly improves the baseline, it is impor-
tant to acknowledge that its performance has not reached the
state-of-the-art level yet (e.g [6], [10]). Further optimization
and model refinements are necessary. Additionally, further
analysis is required in order to understand the relative
strengths and weaknesses of each encoder in different sce-
narios. Nevertheless, we think that our study provides strong
evidence that future research in this direction is needed.

VII. OUTLOOK

Our contribution opens the door to a number of exciting
opportunities for future investigations:

First, we think that our performance can be further im-
proved by applying a different decoder. For simplicity, we
have so far used the decoder of CoverNet [19], which is part
of the nuScenes-devkit. While this decoder works by turning
the trajectory prediction task into a classification task over
a fixed set of trajectory candidates, recent papers suggest
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more expressive output representations such as a mixture of
Gaussians [17] or a heatmap [10].

Second, we have so far limited ourselves to models
with less than 100M parameters. These models have the
advantage that full fine-tuning is straight forward and can
be performed on a single GPU without resorting to any
specialized techniques. However, the performance of lan-
guage models increases with scale and current state-of-the-
art models reach upward of 10 B parameters (see e.g., [23],
[5]). Applying these large models in our setting could be
an interesting way to boost performance, especially when
combined with parameter-efficient fine-tuning [14] or soft
prompting techniques [15]. In addition, the increased context
length of these models would allow us to provide additional
input information such as the state of neighboring agents.

Third, when we fuse information from image and text
representations, we first fine-tune each encoder in isolation,
before concatenating their latent embeddings. While this
approach already outperforms the versions of our model
that use only one of the encoders, we expect an even
larger performance gain when applying a joint image-and-
text encoder such as [16]. The joint encoder can capture and
incorporate the inter-modal relationships between image and
text more effectively, which may lead to improved feature
representations.

Finally, language models in the AD domain are not
restricted to the role of encoders in trajectory prediction
tasks. They can also be considered for generation of auxiliary
textual output, e.g., by decoding the latent scene embedding
into an explanation of the driving maneuver, which would
enhance the prediction interpretability. Another interesting
direction is to apply language encoders for traffic simulation
where scenario-specific instructions can guide the generation
process [22].
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