

Overview

ChatSim is the first system achieves language-controlled photorealistic driving scene simulation. Easy to use Control the simulation with language

- 1. Multi-view consistent photorealistic rendering **McNeRF** for background scene reconstruction
- 2. Flexible simulation with external 3D assets **McLight** for lighting estimation for virtual object insertion

Simulation result with editing

Framework

ChatSim adopts a large language model (LLM)-based multi-agent collaboration framework. The key idea is to exploit multiple LLM agents, each with a specialized role, .

User I want to remove all the scene and add a Mercedes driving tow slowly. Meanwhile, m viewpoint 5m forwar	the cars in black wards me nove my rd.	Agent of Project Manager	Language Comman Data Flow Access to Multivie Areente Areente Areente Areente	nd / Profile Workflow
Tech Agent for 3D Asset Management	"Retrieve the Mercedes model, change color to black."	(Sm forward."	Tech Agent for View Adjustment	"move ah
Car model	"The Mercedes is driving () towards the viewpoint slowly."	"Given the extrinsic, render novel views"	Extrinsics	
Car model + Trajectory	"Render the Mercedes model with given vehicle poses"	Remove all the cars."	Bg. Images	*x*:5,*y*: *theta*:0,*
Fg. Images with Alpha Channe	el Compose	to Video	Inpainted Bg. Images	

Editable Scene Simulation for Autonomous Driving via Collaborative LLM-Agents

Yuxi Wei^{1*} Zi Wang^{3*} Yifan Lu^{1*} Chenxin Xu^{1*} Changxing Liu¹ Hao Zhao⁴ Siheng Chen^{1,2} Yanfeng Wang^{1,2} ¹ Shanghai Jiao Tong University ² Shanghai AI Laboratory ³ Carnegie Mellon University ⁴ Tsinghua University * Equal Contribution

Single-Agent LLM Prompting

Background: An HDR radiance field

Exposure-aware design for consistent brightness rendering

Predict radiance in HDR space (linear)

Calculate loss in LDR space (gamma-corrected)

Foreground: Lighting Estimation + Blender Rendering

- 1. We predict peak intensity vectors, peak direction vectors and sky content vectors from multi-view image.
- 2. We leverage extrinsic-aware self-attention to fuse latent vectors to one, which will decode a skydome HDRI.
- 3. We sample the rays directed at the hemispherical surface in McNeRF to obtain a surrounding HDRI.
- 4. We blend two HDRIs with alpha-blending and use Blender for virtual object rendering.

$$\widehat{\mathcal{I}}_{\text{HDR}}(\mathbf{r}) = f(\Delta t) \cdot \sum_{k=1}^{K} T_k \alpha_k \mathbf{e}_k$$
$$\mathcal{L} = \frac{1}{|R|} \sum_{\mathbf{r} \in R} \left(\text{OETF} \left(\widehat{\mathcal{I}}_{\text{HDR}}(\mathbf{r}) \right) - \mathcal{I}(\mathbf{r}) \right)^2$$

Results

Simulation with language command

Case 1 (highly abstract command)

Case 2 (complex command)

Language command: "Remove all cars in the scene and add a Porsche driving the wrong way toward me fast. Additionally, add a police car also driving the wrong way and chasing behind the Porsche. The view should be moved 5 meters ahead and 0.5 meters above."

Virtual Object Insertion Comparision (foreground rendering)

(a) Hold-Geoffroy et al.

ChatSim

Language command: "Create a traffic jam."

(b) Wang et al.

(c) McLight (Ours)

(d) Spatial-Varying Effect