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• Input: Posed LiDAR scans , along with tracked 

bounding boxes* for dynamic vehicles . Every ray 

 records measurements  as: 

•  range of the first return

•  intensity of the first return

•  ray drop mask

• Goal: Render virtual LiDAR scans  from novel sensor poses  
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• Comprehensive ray measurement evaluation of LiDAR NVS on Waymo Dynamic dataset.
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• Effectiveness of volume rendering for active sensing.

• Scene editing capabilities. The scenes are color coded by intensity values (0               0.25).

-100 cm

100 cm

• Derived SDF-based volume rendering formulation for active sensors;

• Developed a novel neural fields composition method for Dynamic LiDAR re-simulation;

• Provided powerful scene editing capabilities for assets manipulation.

• Object detection on noisy re-simulated LiDAR scans

4 dynamic scenes from Waymo Open datasets (a) Waymo Dynamic (b) Waymo Dynamic NVS

• Perform volume rendering for each intersected neural field, yielding k+1 

LiDAR measurements 

• The Ray is classified as dropped if 

• Determine the result based on the closest non-dropped neural field.
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• Dynamic Neural LiDAR fields: .Fstatic ∪ {Fv}N
v=1

• Loss terms: L = wζLζ + wsLs + weikLeik + weLe + wdopLdrop
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• Object detection agreement. Results from GT and synthetic  
LiDAR scans are marked with red and blue, respectively.
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Problem statement Datasets and evaluation protocol

Experimental results

Active sensing versus passive sensing 

Our contribution

Neural Fields Composition

Method Overview

• Integrate shape priors for unseen regions;

• Refine object b-box based on rendering loss;

• A generative model with learned scene layout. 

Future work


