ETH zürich **OVIDIA**

Problem statement

- Input: Posed LiDAR scans $\mathbf{X} = \{\mathbf{X}_v\}_{v=1}^{n_v}$, along with tracked bounding boxes for dynamic vehicles $\mathbf{B} = \{\mathbf{B}_t^v\}_{v=1}^N$. Every ray $\mathbf{r}(\mathbf{0}, \mathbf{d})$ records measurements (ζ, e, p_d) as:
- ζ : range of the first return
- *e* : intensity of the first return
- $p_d \in \{0,1\}$: ray drop mask
- Goal: Render virtual LiDAR scans \mathbf{X}_{tgt} from novel sensor poses \mathbf{T}_{tgt}

•
$$\begin{aligned} & \text{Active sensing versus pass} \\ & \text{e}_{j} = 2\alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - 2\alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k}) \\ & \text{e}_{j} = \alpha_{j} \cdot \prod_{k=1}^{j-1} (1 - \alpha_{k$$

Neural Fields Comp

- Perform volume rendering for each intersected neural field, yielding LiDAR measurements $\{(\zeta, e, p_d)_i\}_{i=0}^{k+1}$
- The Ray is classified as *dropped* if $p_{d,i} > 0.5$
- Determine the result based on the closest *non-dropped* neural field.

Dynamic LiDAR Re-simulation using Compositional Neural Fields

Hanfeng Wu^{1,2}, Xingxing Zuo², Stefan Leutenegger², Or Litany^{3,4}, Konrad Schindler¹, Shengyu Huang¹

- Developed a novel neural fields composition method for Dynamic LiDAR re-simulation;
- Provided powerful scene editing capabilities for assets manipulation.

position
$$g k+1$$

LIDAR

 $\Phi_{s}(f(\mathbf{p}(n)))$

avmo	Dynamic

Our contribution

• Derived SDF-based volume rendering formulation for active sensors;

Future work

- Integrate shape priors for unseen regions;
- Refine object b-box based on rendering loss;
- A generative model with learned scene layout.