

Introduction

- AV testing under naturalistic driving environment requires high economic and time costs: rarity of safety critical events
- **Dense deep-reinforcement-learning (D2RL)**: remove non-safetycritical-states and densify the information
- **Naturalistic and Adversarial Driving Environment (NADE):** Improve the evaluation efficiency by 10^3 to 10^5 times
- Field test for highly automated vehicle (Autoware) in both highway and urban test tracks using **augmented reality (AR)**

Highlights

Autonomous vehicle

• Enable deep-learning applications in safety-critical systems

NIVERSITY OF MICHIGAN

Dense Reinforcement Learning for Safety Validation of Autonomous Vehicles Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen & Henry X. Liu

D2RL Learning Objective: Minimize the estimation variance

Simulation Test

Feng, S., Sun, H., Yan, X., Zhu, H., Zou, Z., Shen, S., and Liu H.X. (2023). Dense reinforcement learning for safety validation of autonomous vehicles. Nature 615, 620-627. https://doi.org/10.1038/s41586-023-05732-2

