Porsche Engineering

Motivation

Effect of the lateral movement of vehicles within their lane on the range of vision of vehicle sensors

 \rightarrow Important to consider the lateral movement simulations used for the virtual within validation of automated driving functions via so called submicroscopic behavior models

Related Work

- Existing microscopic traffic simulation tools neglect lateral movement except for lane changes [1] or target heterogeneous traffic conditions [2]
- Only a few submicroscopic behavior enabling continuous lateral models movement under homogeneous traffic conditions are proposed in literature [3,4]
- All calibrated based on NGSIM dataset, thus model only general (not driverspecific) behavior and are restricted to short-term data, might be affected by inaccuracies in data

Model

Applicability: Highways under free flow traffic conditions (velocities higher than 40 km/h), Lane following maneuvers (as opposed to lane changes)

Dataset

- Two described in [5]
- different) driver
- Use of relative lateral position:

A Two-Level Stochastic Model for the Lateral Movement of Vehicles Within Their Lane Under Homogeneous Traffic Conditions

Nicole Neis^{1,3}, Jürgen Beyerer^{2,3}

¹Porsche Engineering Group GmbH, 71287 Weissach, Germany, nicole.neis@porsche-engineering.de, ²Fraunhofer IOSB, 76131 Karlsruhe, Germany, ³Karlsruhe Institute of Technology (KIT), Vision and Fusion Laboratory (IES), 76131 Karlsruhe, Germany

Core Idea: For time steps *i* lateral movement x(i) is given as $x(i) = \kappa(i) + \phi(i)$ with • Coarse movement $\kappa(i)$: discrete lateral position, systematic behavior • Fine movement $\phi(i)$: continuous behavior, stochastically independent from coarse

Conclusion

- Development of two-level stochastic model for the lateral movement of vehicles within their lane under homogeneous traffic conditions
- Good agreement for eight out of the ten metrics
- Capable to cover characteristics of different tours
- Extremely fast (10 000 times real time)
- Currently only considering general lateral movement
- Next steps are enhancement to consider other influences on lateral offset behavior such as vehicles on neighboring lanes, longitudinal velocity of ego vehicle, etc.
- Improvement of metrics on difference of consecutive time steps

References

[1] D. Krajzewicz, "Traffic Simulation with SUMO – Simulation of Urban Mobility," in Fundamentals of Traffic Simulation (J. Barceló, ed.), vol. 145, pp. 269–293, New York, NY: Springer New York, 2010.

[2] M. Fellendorf and P. Vortisch, "Microscopic Traffic Flow Simulator VISSIM," in Fundamentals of Traffic Simulation (J. Barceló, ed.), vol. 145, pp. 63–93, New York, NY: Springer New York, 2010.

[3] R. Delpiano, "Understanding the Lateral Dimension of Traffic: Measuring and Modeling Lane Discipline," Transportation Research Record, vol. 2675, pp. 1030–1042, Dec. 2021.

[4] H. Qi, Y. Ying, and J. Zhang, "Stochastic lateral noise and movement by Brownian differential models," in 2022 IEEE Intelligent Vehicles Symposium (IV), (Aachen, Germany), pp. 98–103, IEEE, June 2022.

[5] J. Haselberger, M. Pelzer, B. Schick, and S. Muller, "JUPITER – ROS based Vehicle Platform for Autonomous Driving Research," in 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE), (Abu Dhabi, United Arab Emirates), pp. 1–8, IEEE, Nov. 2022.