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Motivation

Effect of the lateral movement of vehicles within
their lane on the range of vision of vehicle sensors
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A Two-Level Stochastic Model for the Lateral Movement of Vehicles
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Model

Applicability: Highways under free flow traffic conditions (velocities higher than 40 km/h),
Lane following maneuvers (as opposed to lane changes)

Core Idea: For time steps i lateral movement x (i) is given as x(i) = k(i) + ¢ (i) with
» Coarse movement k(i): discrete lateral position, systematic behavior
= Fine movement ¢ (i): continuous behavior, stochastically independent from coarse

- Important to consider the lateral movement

within simulations used for the virt
validation of automated driving functions via
called submicroscopic behavior models

Related Work

= Existing microscopic traffic simulation
tools neglect lateral movement except for
lane changes [1] or target heterogeneous
traffic conditions [2]

= Only a few submicroscopic behavior
models enabling continuous lateral
movement under homogeneous traffic
conditions are proposed in literature [3,4]

= All calibrated based on NGSIM dataset,
thus model only general (not driver-
specific) behavior and are restricted to
short-term data, might be affected by
Inaccuracies in data
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Dataset

Markov model Noise model

= Two  real-world datasets
recorded on German highways

with a Porsche Cayenne as
described in [5]

= Fach tour driven by single (but
different) driver

» Ca. b0 min usable data/dataset
= Use of relative lateral position:

= Capping to achieve stochastic
iIndependence giving @.eas corr

= Coarse movement k(i) via Markov chain over
n. segments of width 1/,

= Resulting In step function, whose jumps
cannot be compensated by fine movement

* Modelling of fine movement via
¢ = R *x k with R white noise,
k a convolution kernel

= Thus, convolution with kernel g.:: k = K * g,

Fitting within Fourier space:
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Conclusion References

= Development of two-level stochastic model for the lateral
movement of vehicles within their lane under
homogeneous traffic conditions

* Good agreement for eight out of the ten metrics

= Capable to cover characteristics of different tours

= Extremely fast (10 000 times real time)

= Currently only considering general lateral movement

= Next steps are enhancement to consider other influences
on lateral offset behavior such as vehicles on neighboring
lanes, longitudinal velocity of ego vehicle, etc.

* Improvement of metrics on difference of consecutive time
steps
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