

Problem: Fairness in Autonomous Driving

- Object detection is a key component of autonomous driving.
- We investigate the algorithmic bias and **fairness of transformer-based object detectors** [1].
- Most previous studies focus on fairness in image classification and other tasks rather than object detection [2].
- Previous research studies [3] performance in either varying weather or demographic group, not considering both together.

Main Contributions

- Propose novel metrics to evaluate the fairness of detection models to supplement existing mean average precision and recall (mAP, mAR).
- Create novel datasets derived from hi-fidelity simulations.
- Evaluate SOTA object detection models (DETR) under different confounding factors and with different demographic groups.

Confidence-Based Metrics

- Current metrics do not provide insights into model confidence
- Average True Positive Confidence (ATPC)

How confident are the correct predictions

- Average False Positive Confidence (AFPC) How confident are the incorrect predictions
- For fairness comparisons we use following disparity metrics

Worst-case difference Δ_{worst} s

Best-case difference Δ_{best} s

Wasserstein-2 metric W_s

References:

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. ECCV 2020. [2] Sunnie SY, Kim, Elizabeth Anne Watkins, Olga Russakovsky, Ruth Fong, and context: Understanding end-users' trust in a real-world computer vision application. FAccT 2023 [3] Martim Brandao. Age and gender bias in pedestrian detection algorithms. arXiv 2019. [4] Laura Gustafson, Chloe Rolland, Nikhila Ravi, Quentin Duval, Aaron Adcock, Cheng-Yang Fu, Melissa Hall, and Candace Ross. Facet: Fairness in computer vision evaluation benchmark. ICCV 2023.

Fairness in Autonomous Driving: **Towards Understanding Confounding Factors** in Object Detection under Challenging Weather Bimsara Pathiraja¹, Caleb Liu², Ransalu Senanayake

Laboratory for Learning Evaluation of autoNomous Systems (LENS Lab), Arizona State University **1.** bpathir1@asu.edu 2. calebliu@asu.edu

• FACET Dataset [4]

• Simulate ambient darkness in FACET images

Fog level: 100%

• Carla dataset

Carla dataset was created by authors simulating multiple weather conditions

and pedestrian types using Carla simulator and an autopilot-enabled car. Fog level: 25% Fog level: 75% Fog level: 50% Fog level: (

• Carla dataset images vs. DETR

Black - ground truth Green - true positives Red - false positives.

The confidence score is shown only when it is > 0.5. With high levels of fog, it is possible to get false positives with confidences as high as 0.8.

The effect of object distance

- Weather conditions impact demographic groups differently.
- current metrics do not.
- word evaluation data.

Results

The effect of skin tone vs. annotated lighting condition

The effect using disparity metrics

0 25 50 75 Fog Intensity

0 25 50 75 100

	Gender			Body size		
Fog levels	$\Delta_{\mathrm{worst}} mAR$	$\Delta_{\rm best} mAR$	W _{mAR}	$\Delta_{\mathrm{worst}} mAR$	$\Delta_{\rm best} mAR$	W _{mAR}
0%	4.71	0.02	0.05	9.45	0.22	0.42
25%	2.73	0.16	0.02	7.85	0.28	0.21
50%	2.42	0.19	0.009	5.14	0.08	0.05
75%	1.43	0.11	0.002	3.24	0.03	0.03
100%	2.27	0.29	0.02	4.95	0.07	0.07

0.60 0 25 50 75 100 Fog Intensity

0 25 50 75 100

Conclusions

----- Female

• Confidence scores are important to consider when evaluating detection models, as they reveal information about models that

• Due to existence of many confounding factors, testing of object detection models should include both simulation and real-

