

Introduction

• Motivation & Problem Statement:

- \succ Lidar sensors are crucial for autonomous vehicles, providing precise 3D environmental scans. However, realistic simulation of Lidar is challenging.
- The traditional physics-based simulation algorithms require hefty computations; therefore, recent data-driven models have emerged.
- Diffusion Models (DMs) have achieved SOTA in Lidar point cloud generation, however, they struggle to realistically model Lidar raydrop noise due to their denoising nature.
- Solution:
 - \succ Retaining the strengths of DMs in iterative sampling and stable training by using auto-regressive transformers, while mitigating their deficiencies by decomposing range image and raydrop synthesis via an adapted VQ-VAE.

Taming Transformers for Realistic Lidar Point Cloud Generation

Hamed Haghighi, Amir Samadi, Mehrdad Dianati, Valentina Donzella, Kurt Debattista

Methodology

- Representation of Lidar Point Cloud:
 - > Spherical projection for KITTI-360: Convert (x, y, z) to (r, θ , ϕ). Scan unfolding for KITTI odometry: Partition sequences into H
 - sub-sequences.

Adapting VQ-VAE:

- Decomposing range image synthesis and raydrop estimation in VQ-VAE decoder
- > Incorporating geometric perseverance during training to improve the generalisability of the VQ-VAE.

- **Auto-Regressive Transformer:**
- > Training Objective: Model token interactions to predict token indices sequentially.
- Output: Iterative token index sampling followed by VQ-VAE decoding to generate realistic range images and raydrop masks.

Results

- **Datasets:** KITTI-360, KITTI-Odometry
- Quantitative Comparison: ➢ KITTI-360:

	Image	BEV		Point cloud
Method	SWD ×10 ² \downarrow	$\mathbf{MMD}{\times}10^{4}\downarrow$	$JSD \times 10^2 \downarrow$	FPD ↓
LidarGen [14]	33.93	2.19	5.70	43.27
UltraLiDAR [13]	N/A	2.23	10.52	N/A
R2DM [9]	20.82	4.00	4.55	10.84
LidarGRIT (Ours)	10.29	2.16	3.93	12.54

> KITTI-odometry:

	Image	Point cloud		
Method	SWD× $10^2 \downarrow$	$MD \times 10^3 \downarrow$	$JSD \times 10^2 \downarrow$	$FPD\downarrow$
LidarGAN [1]	82.29	6.70	15.98	700
Dusty [8]	52.81	2.07	5.10	389
LidarGRIT (Ours)	15.15	1.65	2.06	116

Qualitative Comparison:

Summary

- cloud generation.
- various metrics.

Introduced a novel generative model that integrated autoregressive transformers with VQ-VAE for realistic Lidar point

Incorporated raydrop estimation loss for accurate noise synthesis and geometric perseverance to improve VQ-VAE generalisability. Outperformed state-of-the-art models on KITTI-360 and KITTI odometry datasets, showing significant improvements across