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Method: Automotive data modeling

Quantitative Results

Motivation: Driving data is boring

Dynamic and unbounded scenes:
- Our scene representation is decomposed 

into static and dynamic parts for 
increased controllability.

- Scale-dependent downweighting and 
contraction enables learning features at 
multiple scales, without anti-aliasing.

Qualitative Results

Sensor shift Lane shift Actor editing

Dataset Model PSNR⬆ SSIM⬆ LPIPS⬇

Panda FC
UniSim 25.63 0.745 0.288

NeuRAD 26.58 0.778 0.190

Panda 360°
UniSim* 23.50 0.692 0.330
NeuRAD 25.97 0.758 0.242

nuScenes
S-NeRF 26.21 0.831 0.228
NeuRAD 26.99 0.815 0.225

KITTI MOT
MARS 24.00 0.801 0.164

NeuRAD 27.00 0.795 0.082

Argo2
UniSim* 23.22§ 0.661§ 0.412§
NeuRAD 26.22 0.717 0.315

Zenseact 
Open Dataset

UniSim* 27.97 0.777 0.239
NeuRAD 29.49 0.809 0.226
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Collected data is 
mostly uneventful!

Safe autonomous driving requires 
handling of corner cases.

Manual collections and game 
engine simulations are expensive, 
time-consuming and scales poorly.

NeuRAD: Neural Rendering for AD data

1. Collect sensor data 2. Learn scene representation 3. Render sensor data from new 
views

★ Full rendering capabilities: Neural rendering for full 360° camera and lidar on 
dynamic AD data.

★ AD data modeling: Novel strategies to model camera and lidar data in 
unbounded AD scenes.

★ State-of-the-art performance: Improved metrics on five popular AD datasets.
★ Open-source: Built on top of Nerfstudio, code released at 

https://github.com/georghess/neurad-studio.

Learnable ray drop probability: 
Modeling the phenomenon that lidar 
rays can travel far without hitting a 
surface, or hit surfaces from which 
the beam bounces off. 

Rolling shutter: Modeling rolling 
shutter for both camera and lidar 
to account for a fast moving 
sensor rig. 

Camera-specific embeddings: 
Accounting for varying camera 
settings.

Realistic rendering: High-quality renders of both camera and lidar data, across multiple datasets.

Scalable sensor-realistic simulations: The learned scene can be easily 
manipulated by controlling the self-driving vehicle, changing its sensor 
placement or moving other actors.
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Proposal sampling vs. occupancy:
1. Sampling surfaces far from any lidar 

points.
2. Recovering thin structures or fine 

details of close-up surfaces.
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https://github.com/georghess/neurad-studio

