Neural Rendering for Safety-critical Autonomous Driving Simulation
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Contributions End-to-end planners fail severely in safety-critical scenarios

* Release open source framework for photorealistic closed-loop simulation
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Our closed-loop simulator iteratively performs four steps:

1. The Neural Renderer generates high-quality sensor data. The renderer is trained on a sequence of real-world driving data.

2. The AD Model predicts a future ego-vehicle trajectory given the rendered camera input and the ego-vehicle state.
3. The Controller converts the planned trajectory to a set of acceleration and steering signals.

% Show that two SotA end-to-end planners fail severely in our safety-critical
scenarios despite accurately perceiving the environment.
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4. The Vehicle Model propagates the ego-state forward in time, based on the control inputs. Construct safety-critical scena rios in the Wild
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..and then we use neural rendering to turn a nominal driving scene into
multiple challenging and interesting safety-critical scenarios
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For more information, code, and examples, visit our project page at
research.zenseact.com/publications/neuro-ncap
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