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Motivation and Approach

Simulation is of crucial importance for development and testing of autonomous ve-

hicles. To minimize sim-to-real gap, the simulator should generate realistic scenarios.

In this work, we introduce Knowledge-ConditionedMotion Transformer (KnowMo-

former), integrating long-term routes and model-based actions to the neural net-

work, to make model offer both of realism and controllability.

KnowMoformer Framework
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The architecture of our KnowMoformer. The input of model is time-series of states

of all agents, spatial information of map, route and IDM states of the agent. The

output is the distribution of predicted trajectories of interested agent with GMM.

The learning objective of driving simulator is:

min
θ

DKL(π(xi,T |X i
0:T−1; m)||πθ(xi,T |X i

0:T−1; m)) (1)

The loss function is:

min
θ

LNLL + λhLh + λvLv + λdenseLdense (2)

LNLL = −E{
X i,xGT

i,T

}
∼Preal

[log(πc
θ(xGT

i,T |X i, m, ri, Ii))] (3)

other terms are regression terms for different heads.

Qualitative Results
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During inference, we use the first 5 steps (0.5s) of the output to ensure that the

simulator is interactive. At next unroll step, the input trajectory of each agent is

updated by concatenating with last inference results temporally.

Given a route as conditional input, diverse but route-aligned behaviors can be sam-

pled from the learned distribution, demonstrating the effectiveness of intention-

route attention.

Quantitative Results
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minADE ↓ KLvel ↓ KLacc ↓ COLLISION ↓ OFFROAD ↓

IDM 1.059 0.239 0.838 0.0098 0.389

MTR 0.753 1.277 0.184 0.0134 0.442

MTR+Route 0.549 0.973 0.421 0.0218 0.397

MTR+Proposal 0.761 0.475 0.134 0.0337 0.414

Ours 0.682 0.103 0.126 0.0117 0.382
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