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A Two-Level Stochastic Model for the Lateral Movement of Vehicles
Within Their Lane Under Homogeneous Traffic Conditions”

Nicole Neis!, Juergen Beyerer

Abstract— The lateral position of vehicles within their lane
is a decisive factor for the range of vision of vehicle sensors.
This, in turn, is crucial for a vehicle’s ability to perceive its en-
vironment and gain a high situational awareness by processing
the collected information. When aiming for increasing levels of
vehicle autonomy, this situational awareness becomes more and
more important. Thus, when validating an autonomous driving
function the representativeness of the submicroscopic behavior
such as the lateral offset has to be ensured. With simulations
being an essential part of the validation of autonomous driving
functions, models describing these phenomena are required.
Possible applications are the enhancement of microscopic traffic
simulations and the maneuver-based approach for scenario-
based testing. This paper presents a two-level stochastic ap-
proach to model the lateral movement of vehicles within their
lane during road-following maneuvers under homogeneous
traffic conditions. A Markov model generates the coarse lateral
offset profile. It is superposed with a noise model for the fine
movements. Both models are set up using real-world data.
The evaluation of the model shows promising qualitative and
quantitative results, the potential for enhancements and extreme
low computation times (10 000 times faster than real time).

I. INTRODUCTION

When aiming for increasing a vehicle’s level of autonomy,
sensors such as cameras, LiDAR and radar take over the
perception task. As in case of a human driver, their range of
vision is highly relevant for the maximum degree of situa-
tional awareness they can achieve. As illustrated in Fig. 1,
the lateral offset between vehicles is decisive for the range of
vision of vehicle sensors and the number of objects extracted
out of the sensor data. Moreover, the lateral movement of
vehicles within their lane is a challenging factor for an
autonomous driving (AD) function such as a cut-in detection.
For a reliable prediction of cut-ins, such a function needs to
differentiate the characteristics of an upcoming cut-in from
regular movement within a lane. Also methods aiming for
a general anticipation of maneuvers based on real-world
driving data collected from the vehicles interior and exterior
to assist and warn the driver have been developed (see [1]).
For validating AD functions relying on the perception of
the environment, the so called submicroscopic behavior of
the vehicles such as the lateral position within a lane has
to be realistic with respect to real-world behavior. When
testing under real-world conditions, this can be assumed to be
fulfilled. However, as outlined in [2], exclusively validating
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an AD function using classical methods such as field tests has
become infeasible with increasing autonomy and growing
Operational Design Domains. Thus, classical field tests are
complemented by simulations. Options for this are micro-
scopic traffic simulations [3]-[6] and so called scenario-
based testing within simulations [7]-[12]. For the latter, two
scenario description approaches can be differentiated: the
trajectory-based and the maneuver-based one [13]. When
exactly replaying recorded trajectories, realistic submicro-
scopic behavior during scenario-based testing can be ensured.
However, as explained in [13], using the maneuver-based
approach instead, brings the advantage of increasing the
variety and number of scenarios by simple means and thus
could be an enrichment for scenario-based testing. To ensure
its validity, submicroscopic behavior models are needed.
Other than approaches for trajectory prediction such as [14]
aiming for an exact prediction of the upcoming short-term
trajectory, submicroscopic behavior models have the goal
to cover the space of all possible behaviors, even if they
appear only rarely, for the full duration of a simulation. Also
for microscopic traffic simulations further submicroscopic
models are required to increase their realism especially for
the lateral movement. The use case of a cut-in detection
function demonstrates, how a lack of representativeness can
yield simulation results not suitable for drawing reliable
conclusions on an AD function’s real-world behavior: if a
simulation neglects the lateral position of a vehicle within
its lane and simply locates it in the center, a function trained
with this simulation would label every slight deviation from
the center as an upcoming cut-in. While this would be correct
in the simulation, the performance and safety of this function
under real-world conditions are unclear.

After the introduction in the current section, an overview
over related work is given in Sec. II. Section III describes the
datasets used for calibrating the model that is introduced in
Sec. IV. The results obtained using this model are presented
and discussed in Sec. V. Possible model enhancements are
outlined in Sec. VI. Section VII summarizes the key findings.

II. RELATED WORK

As outlined in Sec. I, there is the need for submicro-
scopic behavior models describing the lateral movements of
vehicles within their lane. Nevertheless, many microscopic
traffic simulation tools such as SUMO [3], Aimsun [4]
and Paramics [5] concentrate on longitudinal movement and
neglect lateral vehicle movement apart from lane changes.
An exception is Vissim [6] where the so called strip-based
approach [17] has been implemented. However, it is tar-
geted at realistically modeling so called heterogeneous traffic
conditions characterized by poor lane discipline and a great
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Fig. 1: Effect of lateral offset between vehicles on same lane on the forward perception range for LIDAR (Valeo Scala Gen. 2, DBSCAN-based detection
[15]) and camera (Mask R-CNN / MS COCO [16]). The ego lane perception range varies between 30 m and 110 m (LiDAR) and ~ 200 m (camera),
motivating the goal to realistically represent this effect in virtual validation.

variety of vehicles [18] and only allows for discrete lateral
movement. Thus, it is not suitable for the envisaged use case
of homogeneous traffic conditions. A method suitable for
homogeneous traffic conditions and allowing for continuous
lateral movement is proposed in [19]: the lateral position
of a vehicle is influenced by the superposition of potential
fields emanated by scenery elements and traffic participants.
A disadvantage of this model is that on an empty, uniform
road, the vehicle will always drive in the center which
is not representative for real-world traffic. Moreover, the
method has not been calibrated with real-world driving data.
A similar approach as in [19] is taken by Delpiano [20].
For calibrating his model, Delpiano uses the NGSIM dataset
[21], [22]. However, he details problems introduced by this
such as inaccuracies arising from the measurements and
applied post-processing, affecting also the lateral position.
Another limitation of data collected from static infrastructure
sensors is that each detected vehicle is only observed for
a short time. Thus, models on general vehicle behavior
can be derived, however, it is not possible to capture the
driving characteristics of individual vehicles and develop
driver-specific behavior models. Though, this is of interest
for simulations as the aim is to model not only average
traffic conditions but to cover the full range, including also
extreme cases such as a specific highly aggressive driver that
might has been detected in reality. In [23], lateral movement
within a lane is included into microscopic behavior models
using a stochastic differential equation. Its parameters are as
well calibrated based on the NGSIM dataset. The model also
enables continuous lateral movement and can reproduce real-
world lateral offset distributions. However, these might be
distorted for the same reasons as in [20] and show the same
limitation of only being able to capture general but not indi-
vidual vehicle behavior. The approach to avoid divergence by
a mapping on the image space of the noise also suggests that,
for longer simulation durations, the lateral behavior might
degenerate towards extremal positions. Moreover, due to the
complex approach of a stochastic differential equation, an
extension of the model to consider the effects of static and
dynamics elements of the environment (e.g. vehicles on a
neighboring lane) on the lateral movement is expected to be
difficult. Current maneuver-based approaches neglect [24] or
simplify the lateral offset behavior [25].

This paper presents a lightweight model for the lateral
movement of a vehicle within its lane during road-following
maneuvers under homogeneous traffic conditions. It allows

for continuous lateral movement and is able to capture the
characteristics of different tours used for calibrating the
model. Every case, in which a vehicle is keeping its lane
and driving with a longitudinal velocity of at least 40 km /h
is considered a road-following maneuver, independent of
other factors such as the acceleration, passing maneuvers of
other vehicles, or a vehicle in front. The restriction of the
longitudinal velocity is applied to exclude the effect of traffic
jams from the model. More details on how these influence
the lateral offset behavior of vehicles are given in Sec. ITI-A.

ITII. DATASET

The calibration of the model presented in Sec. IV is based
on data collected during real-world test drives on German
highways. The recording vehicle used for the two single-
driver tours outlined below was a Porsche Cayenne equipped
as described in [26]. The data used for the practical applica-
tions were obtained from the ego vehicle’s bus signals with a
frequency of about 25 Hz. The bus signals are processed data
from the vehicle’s control units. They include information on
the ego vehicle’s dynamics, indicator status, brake pressure,
gear, etc. In particular, they provide information obtained
from processing the series camera data. From this, object
lists giving the longitudinal and lateral distances, relative
velocities and class of surrounding traffic participants as
well as the distance of the ego vehicle to the left and
right lane marking are obtained. To filter out erroneous
measurements, down-sampling to a frequency of 5 Hz is
applied. It is assumed that below this frequency threshold
significant behavioral features can likely be determined and
thus there is no loss of human driving behavior caused by
this down-sampling. At the same time, it implies that the
scope of the introduced model is the description of human
driving behavior and not the driving physics.

In Sec. IV and V, the model calibration and results are
exemplified on the basis of a recording drive of a single
driver. It had a duration of about 1.5 h and a length of
approximately 170 km (first tour dataset). After removing
lane changes and traffic jam situations, about 50 min of
driving data distributed over the full 1.5 h remained that are
used for setting up the model. As reference, data obtained
from another tour by a different driver are used at a later
stage. This second drive had a duration of about 1 h and
covered approximately 106 km (second tour dataset). Also
in this case, about 50 min remained for usage. In both cases,
the two signals giving the distance to the left and the right
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lane marking were used to derive the lateral position of the
ego vehicle within its lane. This is the only input needed
for calibrating the presented model. To be able to compare
the lateral offset behavior even if the lanes have different
widths, the relative lateral position within the lane is used in
the following. A relative lateral position of 0 indicates that
the center of the vehicle is exactly in the middle of the lane,
—0.5 indicates that the center of the vehicle is exactly over
the left lane marking, if the relative lateral position is equal
to 0.5 the center of the vehicle is over the right lane marking.

To complement the two single-driver datasets, the so called
extended dataset is used in addition. It consists of several
recording drives of different drivers on German highways
with a total duration of 15 h and a length of about 1600 km.
Besides the Porsche Cayenne, a Porsche Taycan delivering
the same bus signals was used for recording. The recording
frequencies lie between 18 and 25 Hz. The extended dataset
is used to derive possible advancements of the model (see
Sec. VI) and to make a reasonable selection of the data used
for setting up the two-level stochastic model (see Sec. ITI-A).

A. Velocity dependence of lateral movement

Within this section, the lateral offset behavior of vehicles
in dependence of their velocity is put into focus. Fig. 2 shows
the relative lateral position of passenger cars on a left, right
or center lane for different longitudinal velocities. Besides
the bus signals giving the distance to the left and right lane
marking, the object lists describing the surrounding traffic
were used. Depicted are the measurements taken from all
lead vehicles (the vehicle in front of the ego vehicle) with
a distance of not more than 100 m from the ego vehicle
contained within the extended dataset. The lead vehicles are
used instead of the ego vehicles to avoid over-representation
of certain ego vehicle drivers. Data analysis revealed that for
higher distances between the ego vehicle and the lead vehicle
inaccuracies occur, e.g. due to road curvature, therefore
the distance restriction of 100 m is introduced. Particularly
interesting in Fig. 2 are the low velocities: vehicles tend
to be located further left when driving on the left lane and
further right when driving on the center lane. This positioning
within the lane reflects the creation of an emergency lane
in case of a traffic jam. It motivates the restriction of the
data used for setting up the two-level stochastic model to
those for which the ego vehicle’s longitudinal velocity was
at least 40 km/h. For higher velocities, the size of the
velocity- and lane-dependent effects seem to be smaller.
Therefore, for the initial model presented in this paper, these
effects are neglected. However, as interrelations between the
longitudinal velocity and the lane with the lateral positioning
can still be noted, these are to be considered in future models.
More details on this are given in Sec. VL.

IV. MODEL

The core idea of the introduced model is the separation of
the lateral movement of a vehicle into two independent parts:
the coarse movement x(i) and the fine movement ¢ (i) over
time steps ¢. If superimposed, they result in the observed
lateral driving behavior of a vehicle within its lane

(i) = r(i) + (i) , ()

where the coarse model « provides position-dependent be-
havior based on discrete states, to represent systematic
behavioral properties in the lateral position, while the fine
model ¢ contributes residual, continuous behavioral prop-
erties, defined as being stochastically independent from the
coarse behavior. Both models are described in detail in the
following sections. Fig. 3 illustrates how the real offset
profile is processed to set up the two-level stochastic model
and how an inversion of this process — the usage of the model
— generates an artificial lateral offset profile.

A. Coarse movement: Markov model

To model the state-dependent, state-discrete dynamic be-
havior of k(i) stochastically, we use a Markov chain. This
decision is motivated by the temporal continuity of a ve-
hicle’s lateral movement, making a position close to the
current one more likely for the next time step than those
further away. We define the Markov chain over the space of
lateral lane coordinates between —0.5 and 0.5 by dividing
it into n. segments of width /n., where we use a value
of n, = 20 in all practical applications. State transitions
occur over time indices ¢. For the practical applications, we
choose a time step of 0.2 s. The resulting transition matrix
T is of dimension n, X n.. We parameterize it through
the relative lateral position information from the first tour
dataset. Thus, from the Markov model, we receive discrete
lateral positions ranging from —0.5 + /2n. to 0.5 — 1/2n,,
resulting in a step function as lateral offset profile. We
note that the direct outputs of the Markov chain, which we
will denote as &, are still unsuitable for the model. By our
model definition according to (1), the remainder to achieve
the complete lateral motion, the fine movement ¢, should
be stochastically independent from the coarse movement.
Hence, an independent ¢ cannot compensate sharp state
transitions in x when they occur. Instead, we must assure
that (i) — x(4¢) be, in good approximation, homogeneous
over 7. Therefore we let

K=RK*(s

2)

where ¢ is a Gaussian kernel with mean zero and standard
deviation s (s = 0.6 s and support £1s in all practical appli-
cations). The choice of s directly interacts with the obtained
results for ¢ according to Sec. IV-B: when chosen too
sharp, discretization errors will dominate in ¢; when chosen
too wide, the state-dependent results of & will be erased,
leaving the weaker model ¢ to primarily determine the
lateral behavior. Fig. 4 illustrates the results obtained when
choosing s = 0.6 s versus not applying any convolution with
a kernel g.

B. Fine movement: noise model

As initially stated, we assume the remaining fine move-
ment ¢ to be independent of . The validity of this assump-
tion is discussed in Sec. V. The fine movement of the driver
is extracted out of measured data xe,s in the following way
(see Fig. 3 for an illustration):

Pmeas = Tmeas — Fmeas * Js €))
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Fig. 3: Illustration of the model setup (in blue, left side) and its inversion, the model usage (in green, right side). The * operator stands for a convolution
of the lateral offset profile with a Gaussian kernel. Elements in purple illustrate how the real data are used for calibrating the two stochastic models.
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Fig. 4: Illustration of the effect of convolving the coarse lateral offset profile
generated by the Markov model with a kernel g5, s = 0.6 s on the final
artificial trajectories: clearly visible steps that are not observable in the real
lateral offset profiles vanish.

where Ameas 1S given DY Zpess rounded to steps of 2/n..
The resulting ¢peas is illustrated in Fig. 5. As it can be
seen, a few peaks occur in this signal. These peaks only
make sense in combination with the coarse lateral position
at the point of time they occur in the real driving data.
Thus, they introduce a dependency between the fine and the
coarse lateral movement. Consequently, if using ¢eas for
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parametrizing ¢, stochastic independence between the coarse
and the fine movement is not given, causing deviations. For
that reason, @meas,corr 18 Used instead for parametrizing ¢. It
is derived from ¢6q5 by capping ¢peas above and below a
certain threshold tjf (we choose tjf = +£0.03 in all practical
applications).

As according to our model, ¢ is stochastic, independent of
x and homogeneous across its value range, we can specify
it through a noise model of unknown frequency composition
w.r.t. constrained, uniform white noise R(7). This allows us
to compute

op=Rxk “4)

where k is an unknown convolution kernel. In frequency
space, F{k} acts as a real-valued damping function. Thus,
we consider the Fourier-transform F{¢mescor} Of the
capped measured fine movement with respect to the Fourier-
transform of the constrained uniform white noise F{R}, and
approximate F{k} as a piecewise linear function, as shown
in Fig. 6. F{k} is varied until F{¢pmeascorr} and F{k x R}
are in good accordance. Its inverse Fourier transform then
provides k for applying (4). The model for the fine movement
can also be interpreted as sampling from a Kalman filter with
a transition matrix reproducing a convolution with the kernel
k and the remaining terms are set to zero.
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V. RESULTS AND DISCUSSION

The developed model is evaluated using ten metrics ap-
plied to lateral offset snippets of 10 s duration. Let X =
[z0, ..., 7] € R™FL with x; the relative lateral position
at ¢ time steps after the initial time ¢y be such a lateral
offset snippet. Then the used metrics are the following: 2 ax
(maximum of X), x,j, (minimum of X), & (mean of X),
o (standard deviation of X), xp 5 (median of X), xg.o5
(25 % percentile of X), zg.75 (75 % percentile of X), r
defined as r := |Zmax — Tmin| (range of X), Zair,10 (mean
difference between two consecutive values in X times 10),
odqifr,10 (standard deviation of the difference between two
consecutive values in X times 10). The metrics applied on
X directly indicate whether the same (extremal/mean) lateral
positions are reached equally often in the real and artificial
lateral offset snippets and whether these snippets have equal
lateral ranges. The metrics applied on the difference of
two consecutive values in x allow to evaluate the temporal
evolution of the artificial offset snippets and their similarity
to the real ones.

To assess not only the full two-level stochastic model
but also its components separately, the evaluation is split
into four steps. For every evaluation, the first tour dataset
is divided into snippets of 10 s duration. To compare the

Odiff,10 7 =/\> : :
Tdiff,10 H@H
r @_H
Z0o.75 7 H%ﬂ
é 02 ] H-@ real
g ] " . . artificial
0.5 1] T i
o %_N
Tmin 7 : : = H
|
Tmax 7 I : I :
—0.2 0.0 0.2 0.4

Relative lateral position within lane
Left negative, right positive

Fig. 7: Comparison of metrics for real lateral offset profiles and lateral
offset profiles generated by keeping the real coarse movement and adding
the time-shifted capped real fine movement.

metrics for the real and the artificial lateral offset profiles,
for each real lateral offset snippet, an artificial one having
the same duration and initial lateral offset is generated.

A. General model validity

First, the general validity of separating the lateral move-
ment of a vehicle into a coarse and a fine movement is dis-
cussed. For this, artificial lateral offset profiles are generated
in the following way: the real coarse lateral offset profile
is kept and superposed with the capped real fine movement
which is circularly shifted by 5 s. Fig. 7 shows the results
obtained when evaluating the defined metrics. In the here
depicted as well as all following violin plots, the vertical
lines refer to the minimum, mean and maximum value. In
Fig. 7 it can be seen that the metrics differ only slightly from
the ones of the real lateral offset snippets. Thus, shifting the
fine part does not substantially change the characteristics of
a driver’s lateral movement for the chosen model set up. This
confirms the assumption made in Sec. IV-B and shows that
indeed in our practical application the fine and the coarse
lateral movement can be considered independent and the
separation can be rated permissible. At the same time, Fig. 7
also indicates the maximum agreement with the developed
model one can achieve when generating an artificial lateral
offset profile.

B. Evaluation of Markov model

In the next step, the quality of the Markov model is
evaluated. The artificial lateral offset profiles are obtained
by keeping the capped real, not shifted fine movement and
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Fig. 8: Comparison of metrics for real lateral offset profiles and lateral offset
profiles generated by keeping the capped real fine movement and adding an
artificial coarse movement created by the Markov model.

replacing the real coarse lateral offset profile by an artificial
one generated by the Markov model. The results are given
in Fig. 8. Overall, the deviations from the real results for the
metrics are only slightly greater than in Fig. 7 and there is
still good agreement between both.

C. Evaluation of noise model

Similarly to the previous step, this section evaluates the
quality of the noise model only. The artificial lateral offset
profiles consist of the real coarse lateral offset profile and
added noise generated by the noise model. Fig. 9 illustrates
the results. Besides the metric oqig 10 the results are close
to what has been achieved with the time-shifted capped real
fine movement in Fig. 7.

D. Evaluation of full two-level stochastic model

In the last step the performance of the full two-level
stochastic model is assessed. For this, completely artificial
lateral offset profiles are generated by combining the Markov
model for the coarse movement and the noise model for the
fine movement. The results obtained are visualized in Fig. 10.
For Zgig,10 and especially oqifr,10 discrepancies between the
real and the artificial lateral offset profiles can be noted.
The plots for the remaining metrics show a good alignment.
Fig. 11b illustrates sample artificial lateral offset profiles
generated by starting from the initial lateral position of the
real lateral offset profiles depicted in Fig. 11a. Even though
the results for Zgig,10 and ogim,10 indicate some weaknesses
of the artificial lateral offset profiles, it is not possible to
distinguish them from the real ones based on the plots.
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Fig. 9: Comparison of metrics for real lateral offset profiles and lateral
offset profiles generated by keeping the real coarse movement and adding
an artificial fine movement created by the noise model.

Considering the results of this and the previous sections
it can be concluded that the Markov model is well suitable
to model the coarse movement of a vehicle within its lane.
Also the noise model shows good qualitative results and good
agreement for eight out of the ten metrics. However, there is
potential for improvement regarding the jumps of the lateral
offset from one time step to the next.

To show how the model is able to capture the charac-
teristics of different tours, it is applied to the second tour
dataset. The results are illustrated in Fig. 12. It can be seen
that the results obtained for the metrics using this drive
differ from the ones seen before. With the given data, the
differences cannot clearly be assigned to the driver as also
other factors within the tour such as the traffic density might
be responsible for those. However, it can be seen that the
model is able to reflect such differences and thus it can be
expected that it would also be able to capture driver-specific
characteristics in particular.

Another advantage of the introduced two-level stochastic
model is its lightness: on a single core of a machine with an
Intel Core i7-10850H processor running at 2.7 GHz, 18 000
evaluations of the model corresponding to the calculation
of the lateral offset profile for a 1 h drive took about
0.36 s. Thus, the model is about 10000 times faster than
real-time. This makes it suitable for Hardware-in-the-loop
and batch simulations. The fine movement generated by the
noise model can even be calculated offline in advance, saving
additional 5 % computation time. Note also that the model
is computed per vehicle, i.e. in practical applications it will
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Fig. 10: Comparison of metrics for real lateral offset profiles and lateral
offset profiles generated by the combination of Markov and noise model.

scale linearly w.r.t. the number of simulated vehicles.

VI. MODEL ENHANCEMENT

A limitation of the developed model is that it is only based
on the overall lateral offset profile of a given tour. In order
to create artificial lateral offset profiles that do not only
represent the general characteristics but are realistic with
respect to real-world behavior, the model has to be further
enhanced. Existing literature and the analysis performed in
Sec. III-A reveal dependencies of the lateral movement on
the static environment (e.g. the lane (left/center/right), the
lane width [27], [28]), the surrounding traffic participants
(e.g. oncoming traffic [28] and the vehicle in front [29])
and ego vehicle related aspects (e.g. longitudinal velocity as
shown in Fig. 2). Including aspects such as the ego vehicle’s
longitudinal velocity into the model particularly implies the
consideration of dependencies between the lateral and the
longitudinal movement. As the work performed within the
scope of this paper indicates that the fine lateral movement
is independent from the coarse lateral position of a vehicle,
it can be assumed that the enumerated factors mainly affect
the latter. Thus, in particular the Markov model needs to be
enhanced. A possible approach is to extend it to a Hidden
Markov model with hidden states representing influencing
factors such as the lead vehicle.

The Markov model used within this paper is a first order
Markov model. The good performance of this models suggest
the assumption that this is sufficient for the considered use
case of modelling the general characteristics of a tour. How-
ever, when considering influences with a temporal extension
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Fig. 11: Illustration of real and artificial lateral offset profile generated by
two-level stochastic model. Lateral offset profiles of the same color have
the initial position in common.
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such as the overtaking of a vehicle, more than one previous
state might be relevant to determine the next one, requiring
a higher level Markov model.

As stated earlier, the noise model’s performance regarding
the metrics Zaqif,10 and ogig,10 1S another candidate for
advancement.

A further possible enhancement of the model is the consid-
eration of driving physics. As long as the vehicle is operating
far away from its physical boundaries, these can be handled
by a downstream control model that physically implements
the human behavior. However, when considering scenarios
such as near misses in which a system comes close or reaches
its physical boundaries, an interlocking of the behavioral and
physical model might be necessary.

VII. CONCLUSION

Most simulations of homogeneous traffic conditions cur-
rently neglect or simplify the lateral movement of vehicles
within their lane. However, as outlined, there is a clear
necessity for such models. Therefore, this paper introduces a
two-level stochastic model to describe the lateral movement
of vehicles within their lane. It consists of a Markov model
for a vehicle’s coarse movement and a noise model for the
independent fine movement. From the performed evaluation
it can be seen that this split into two granularity layers can
be rated permissible for the chosen model setup. While the
results of the Markov model are in very good agreement
with the real behavior, the noise model shows potential
for improvements regarding two out of the ten defined
metrics. The two-level stochastic model is able to capture
characteristics of different tours. Thus, it can be expected that
it is suitable to model individual drivers within a simulation.
An additional advantage of the model is its extremely low
computation time. Moreover, the model is flexible due to its
formulation in terms of stochastic models with established
generalizations, in particular the extension of Markov chains
to Hidden Markov models. This supports the consideration
of surrounding traffic interactions and ego vehicle related
factors influencing the lateral offset profile in a next step.
First potential candidate factors and their possible effects
have already been identified.
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