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Abstract

A primary hurdle of autonomous driving in urban envi-
ronments is understanding complex and long-tail scenar-
ios, such as challenging road conditions and delicate hu-
man behaviors. We introduce DriveVLM, an autonomous
driving system leveraging Vision-Language Models (VLMs)
for enhanced scene understanding and planning capabili-
ties. DriveVLM integrates a unique combination of chain-of-
thought (CoT) modules for scene description, scene analysis,
and hierarchical planning. Furthermore, recognizing the
limitations of VLMs in spatial reasoning and heavy computa-
tional requirements, we propose DriveVLM-Dual, a hybrid
system that synergizes the strengths of DriveVLM with the
traditional autonomous driving pipeline. DriveVLM-Dual
achieves robust spatial understanding and real-time infer-
ence speed. Extensive experiments on both the nuScenes
dataset and our SUP-AD dataset demonstrate the effec-
tiveness of DriveVLM and the enhanced performance of
DriveVLM-Dual, surpassing existing methods in complex
and unpredictable driving conditions. 1

1. Introduction
Autonomous driving, with its great promise to revolutionize
transportation and urban mobility, has been one of the most
active areas of research and development over the past two
decades. A primary hurdle to a fully autonomous driving
system is scene understanding [3], which involves navigating
complex, unpredictable scenarios such as adverse weather,
intricate road layouts, and unforeseen human behaviors.

Existing autonomous driving systems, typically compris-
ing 3D perception, motion prediction, and planning, struggle
with these scene understanding challenges. Specifically, 3D
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perception [28, 30, 39, 45] is limited to detecting and track-
ing familiar objects, omitting rare objects and their unique
attributes; motion prediction [16, 18, 33, 35, 56] and plan-
ning [2, 31, 38] focus on trajectory-level actions, often ne-
glecting the decision-level interactions between objects and
the vehicle.

We introduce DriveVLM, a novel autonomous driv-
ing system that aims at the scene understanding chal-
lenges, capitalizing on the recent Vision-Language Mod-
els (VLMs) [32, 51, 54, 57] which have demonstrated ex-
ceptional prowess in visual comprehension and reasoning.
Specifically, DriveVLM contains a Chain-of-Though (CoT)
process with three key modules: scene description, scene
analysis, and hierarchical planning. The scene description
module linguistically depicts the driving environment and
identifies critical objects in the scene; the scene analysis mod-
ule delves into the characteristics of the critical objects and
their influence on the ego vehicle; the hierarchical planning
module formulates plans step-by-step, from meta-actions
and decision descriptions to waypoints. These modules re-
spectively correspond to the components of the traditional
perception-prediction-planning pipeline, but they differ in
that they tackle object perception, intention-level prediction
and task-level planning, which were extremely challenging
to cope with in the past.

While VLMs excel in visual understanding, they have
limitations in spatial grounding and reasoning, and their
computational intensity poses challenges for onboard in-
ference speed. Therefore we further propose DriveVLM-
Dual, a hybrid system that combines the strengths of both
DriveVLM and traditional systems. DriveVLM-Dual op-
tionally integrates DriveVLM with traditional 3D perception
and planning modules, such as 3D object detectors, occu-
pancy networks, and motion planners, enabling the system to
achieve 3D grounding and high-frequency planning abilities.
This dual system design, akin to the human brain’s slow
and fast thinking processes, adapts efficiently to varying
complexity in driving scenarios.
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Meanwhile, we formally define the scene understanding
and planning (SUP) task, and propose new evaluation metrics
to assess the scene analysis and meta-action planning capa-
bilities of DriveVLM and DriveVLM-Dual. Furthermore,
we carry out a comprehensive data mining and annotation
pipeline to construct an in-house SUP-AD dataset for the
SUP task.

Extensive experiments on the nuScenes dataset and our
dataset demonstrate the superiority of DriveVLM, especially
in few-shot situations. Moreover, DriveVLM-Dual surpasses
state-of-the-art end-to-end motion planning methods.
In summary, the contributions of this paper are fourfold:
1. We introduce DriveVLM, a novel autonomous driving

system that leverages VLMs for effective scene under-
standing and planning.

2. We further introduce DriveVLM-Dual, a hybrid sys-
tem that incorporates DriveVLM and a traditional au-
tonomous pipeline. DriveVLM-Dual achieves improved
spatial reasoning and real-time planning capabilities.

3. We present a comprehensive data mining and annotation
pipeline to construct a scene understanding and planning
dataset, together with metrics to evaluate the SUP task.

4. Extensive experiments on the nuScenes dataset and our
SUP-AD dataset demonstrate the superior performance
of DriveVLM and DriveVLM-Dual in complex driving
scenarios.

2. Related Work
Vision-Language Models (VLMs). Recently, there has
been a surge in research on large Vision-Language Models
(VLMs), exemplified by works such as MiniGPT-4 [57],
LLaVA [32], Qwen-VL [1], and others [12, 44, 54, 55].
These models integrate pre-trained vision encoders with
large language models, enabling large language models to
address many tasks involving images as input. In general,
these methods align image features with the input embed-
ding space of the language model through Q-former [29] or
linear mapping [32]. A crucial step in the training process
is supervised fine-tuning using instructional data containing
images and text, enhancing the overall performance of vision
language models. VLMs can be used in various scenarios,
especially robotics [4, 5, 15, 23, 37]. Specifically, given
instructions, input images, and robot states, vision language
models output corresponding actions that can be high-level
instructions [15] or low-level robot actions [5]. DriveVLM
focuses on utilizing VLMs to assist in autonomous driving,
thereby establishing a novel framework. Concurrent to our
work, [51] also shares a similar motivation.

Learning-based Planning. The integration of learning
frameworks into motion planning has been an active area
of research since Pomerleau [38] pioneering contributions.
One promising line of work is Reinforcement learning and

imitation learning [8, 9, 43]. These methods can learn an
end-to-end planning policy that directly maps raw sensory
inputs to control actions [43]. They are particularly suited to
high-dimensional state and action spaces, a common chal-
lenge in motion planning. However, the direct generation
of control outputs from sensor data poses significant chal-
lenges in robustness and safety assurance [11]. Several
works [7, 20, 46, 53] improve interpretability by explic-
itly building dense cost maps derived from learning-based
modules. While dense cost maps effectively integrate pre-
dictions about traffic agents’ future movements and envi-
ronmental factors, their performance heavily depends on
costs tailored through human experience and the trajectory
sampling distribution [25]. A recent trend involves train-
ing multiple blocks in an end-to-end fashion [7, 20, 22, 41].
These methods enhance overall performance, but rely on
backpropagation from future trajectory predictions loss in a
less interpretable decision-making process [10]. Our model,
DriveVLM, addresses the complexities of long-tailed driving
scenarios, often challenging for other methods, by leverag-
ing the generalization and reasoning capabilities of vision-
language models. Moreover, users can easily interact with
our model through the intuitive language interface provided
by the vision-language model, enhancing interpretability.

Driving Caption Datasets. Recent works [19, 51, 52]
argue that language captions are an important medium to
connect human knowledge with the driving objective, help-
ing to inform decisions and actions. In support of this
trend, some efforts have enhanced mainstream driving scene
datasets. Refer-KITTI [48] annotates objects in the KITTI
dataset [17] with language prompts that can reference a
collection of objects. Talk2Car [13], NuPrompt [49] and
nuScenes-QA [40] introduce free-form captions and QA an-
notation to the nuScenes dataset [6]. However, these works
enrich the datasets that are perception-focused and often
contain simple traffic scenes. Instead of augmenting existing
datasets, BDD-X [27] and BDD-OIA [50] offer datasets with
natural language explanations for the ego vehicle’s actions.
HAD [26] employs natural language commands to produce
salient maps from drivers’ gaze data. Rank2Tell [42] and
DRAMA [34] annotate language explanations and risk lo-
calization for traffic scenarios. While these datasets provide
scenes tailored for utilizing natural language, there is a lack
of enough data that capture scenarios that are crucial for
identifying issues that could lead to safety concerns in self-
driving systems. Our SUP-AD dataset stands in contrast by
purposefully gathering a diverse array of challenging, long-
tail scenarios that are essential for addressing complex scene
understanding and planning.
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<SYSTEM> Describe the 
driving conditions.

Large Vision Language Model

<SYSTEM> Matched objects: 
police car, history trajectory:xxx.
Unmatched objects: …
Describe the critical objects and their 
influence on the ego-vehicle.

Characteristics: Parking on the right 
side of the road.
Influence: Blocking the right lane and 
indicating a potential for accidents or 
other incidents.
Summarized Analysis: …

Scene AnalysisScene Description

Meta-actions: [slow down, shift 
slightly to the right, go straight at a 
constant speed].
Decision: Slow down and shift 
slightly to the right to overtake the 
barrier and then go straight at a 
constant speed.
Waypoints: [(x1, y1), …, (xn, yn)].

Hierarchical Planning

<SYSTEM> Ego state and 
historical trajectory are […], 
determine meta-actions, decisions, 
and plan future waypoints. 

Motion Prediction Trajectory Planning3D Perception

Traditional Pipeline

Weather: cloudy.
Road type: suburban.
Time: Daytime.
Lane condition: right lane 
impassable, left lane passable.

Critical objects: police car at 
[(x1, y1), (x2, y2)]……

Trajectory 
RefinementMatching

DriveVLM

DriveVLM-Dual

Sequence of Images

Low Frequency

High Frequency

Prompting

<DRIVLEVLM> 

Figure 1. DriveVLM and DriveVLM-Dual model pipelines. DriveVLM accepts sequences of images as input and, through a Chain-of-
Thought (CoT) mechanism, outputs scene description, scene analysis, and hierarchical planning results. DriveVLM-Dual further incorporates
traditional 3D perception and trajectory planning modules to achieve spatial reasoning capability and real-time trajectory planning.

3. DriveVLM
3.1. Overview

The overall pipeline of DriveVLM is illustrated in Figure 1.
A sequence of images is processed by a large Vision Lan-
guage Model (VLM) to perform a special chain-of-thought
(CoT) [47] reasoning to derive the driving planning results.
The large VLM involves a vision transformer encoder [14]
and a Large Language Model (LLM). The vision encoder
produces image tokens; then an attention-based extractor
aligns these tokens with the LLM; finally, the LLM performs
CoT reasoning. The CoT process can be divided into three
modules: scene description (Section 3.2), scene analysis
(Section 3.3), and hierarchical planning (Section 3.4).

DriveVLM-Dual is a hybrid system that combines
DriveVLM and the traditional autonomous driving pipeline,
taking the best of both worlds. It incorporates 3D percep-
tion results as language prompts for enhanced 3D scene
understanding capability, and further refines the trajectory
waypoints with a real-time motion planner. We detail its
design and advantages in Section 3.5.

3.2. Scene Description

The scene description module is composed of environment
description and critical object identification.

Environment description. Driving environments, such
as weather and road conditions, have a non-negligible
impact on driving difficulty. Therefore, the model is
first prompted to output a linguistic description E of the
driving environment, including several conditions: E =
{Eweather, Etime, Eroad, Elane}, each representing a crucial as-
pect of the driving environment.
• Eweather details the weather conditions, ranging from

sunny to snowy. Conditions such as rain or fog demand
more cautious driving approaches due to reduced visibility
and road grip.

• Etime encapsulates the time of day, differentiating between
daytime and nighttime driving scenarios. For example,
nighttime driving, characterized by reduced visibility, ne-
cessitates cautious driving strategies.

• Eroad classifies the type of roads, including urban, sub-
urban, rural, or highway, where each road type presents
unique challenges.

• Elane gives a description of the lane conditions, identifying
the vehicle’s current lane and potential alternatives for
maneuvering. This information is vital for lane selection
and safe lane changes.

Critical object identification. In addition to environmental
conditions, various objects in driving scenarios significantly
influence driving behaviors. Unlike traditional autonomous
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driving perception modules, which detect all objects within a
specific range, we solely focus on identifying critical objects
that are most likely to influence the current scenario, inspired
by human cognitive processes during driving. Each critical
object, denoted as Oc, contains two attributes: the object
category c and its approximate bounding box coordinates
b(x1, y1, x2, y2) on the image. The category and coordi-
nates are mapped to their corresponding language token_id
in the language modality, enabling seamless integration into
the following modules. Moreover, taking advantage of the
pre-trained vision encoder, DriveVLM can identify long-tail
critical objects that may elude typical 3D object detectors,
such as road debris or unusual animals.

3.3. Scene Analysis

In the traditional autonomous driving pipeline, the predic-
tion module typically concentrates on forecasting the future
trajectories of objects. The emergence of advanced vision-
language models has provided us with the ability to perform
a more comprehensive analysis of the current scene.
Critical Object Analysis. After identifying the critical ob-
jects, we analyze their characteristics and potential influence
on the ego vehicle. Characteristics contain three aspects
of a critical object: static attributes Cs, motion states Cm,
and particular behaviors Cb. Static attributes Cs describe
inherent properties of objects, such as a roadside billboard’s
visual cues or a truck’s oversized cargo, which are critical in
preempting and navigating potential hazards. Motion states
Cm describe an object’s dynamics over a period, including
position, direction, and action—characteristics that are vi-
tal in predicting the object’s future trajectory and potential
interactions with the ego vehicle. Particular behaviors Cb

refer to special actions or gestures of an object that could
directly influence the ego vehicle’s next driving decisions.
For instance, a traffic officer’s hand signals are critical in
this context, as they can override standard traffic rules and
necessitate a corresponding response from the autonomous
system. We do not require the model to analyze the three
characteristics (Cs, Cm, Cb) for all the objects. In practice,
only one or two apply to a critical object.

Upon analyzing these characteristics, DriveVLM then pre-
dicts the potential influence I of each critical object on the
ego vehicle. For example, a drunken pedestrian on the road-
side could potentially step onto the road and block our way.
Compared to trajectory-level prediction in the traditional
pipeline, the analysis of the potential influence of critical
objects is crucial for the system’s adaptability to real-world
and long-tail driving scenarios.
Scene-level Summary S. The scene-level analysis summa-
rizes all the critical objects together with the environmental
description. This summary gives a comprehensive under-
standing of the scene, linking the following planning module.

3.4. Hierarchical Planning

We integrate the scene description and scene analysis to form
a summary of the driving scenario. The summary is further
combined with the route, ego pose and velocity to form a
prompt for planning. Finally, DriveVLM progressively gen-
erates driving plans, in three stages: meta-actions, decision
description, and trajectory waypoints.
Meta-actions A. A meta-action, denoted as ai, represents a
short-term decision of the driving strategy. These actions fall
into 17 categories, including but not limited to acceleration,
deceleration, turning left, changing lanes, minor positional
adjustments, and waiting. To plan the ego vehicle’s future
maneuver over a certain period, we generate a sequence of
meta-actions. Each meta-action in this sequence is pivotal,
contributing cumulatively to the strategic navigation of the
vehicle in the scene.
Decision description D. Decision description D articulates
the more fine-grained driving strategy the ego vehicle should
adopt. It contains three elements: Action A, Subject S,
and Duration D. Action pertains to meta actions such as
‘turn’, ‘wait’, or ‘accelerate’. Subject refers to the interacting
object, such as a pedestrian, a traffic signal, or a specific
lane. Duration indicates the temporal aspect of the action,
specifying how long it should be carried out or when it
should start. An example of a decision description is: “Wait
(A) for the pedestrian (S) to cross, then (D) proceed to
accelerate (A) and merge into the right lane (S).". This
structured decision description allows for clear, concise, and
actionable instructions for the autonomous system.
Trajectory waypoints W . Upon establishing the decision
description D, our next phase involves the generation of cor-
responding trajectory waypoints. These waypoints, denoted
by W = {w1, w2, ..., wn}, wi = (xi, yi), depict the vehi-
cle’s path over a certain future period with predetermined
intervals ∆t. We map these numerical waypoints into lan-
guage tokens for auto-regressive generation. In this way,
DriveVLM achieves seamless integration of its linguistic
processing module with spatial navigation. The trajectory
waypoints are the spatial manifestation of the meta-actions
and decision descriptions, which can be directly fed into
subsequent control modules.

3.5. DriveVLM-Dual

Although VLMs are adept at recognizing long-tail objects
and understanding complex scenarios, they often struggle
with precisely comprehending spatial positions and detailed
motion states of objects. This shortfall, noted in previous
research and our pilot studies, poses a significant challenge.
What is worse, the humoungous model size of VLMs leads
to high latency, impeding their ability to respond in real-time
for autonomous driving. To address these challenges, we pro-
pose DriveVLM-Dual, a collaboration between DriveVLM
and the traditional autonomous driving system. This novel
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Scene Summary: The ego vehicle is moving at a constant speed along the current lane, with ongoing road construction work ahead; there are three construction

workers working on the left side of the lane at the roadside.

Meta Action: ["Slow down”, "Change lane to the left”, "Go straight slowly"]

Decision Description: Decelerate and change lanes to the left, keeping a safe distance from the 

construction workers on the left front side.

Weather: Sunny

Time: Daytime

Class: Three Construction 

Workers

Characteristic: Construction work 

on the side of the 

lane to the left of 

the host vehicle

Influence: Affects the normal 

speed of the host 

vehicle 

Critical Object 1:

Class: Construction Zone

Characteristic: Road repair in front 

of the host vehicle 

lane

Influence: Affects the host 

vehicle to drive 

straight normally

Critical Object 2:

Road Condition:     Construction

LW433B121N10354831677217563446

Lane Condition:     Own Lane

Figure 2. An annotated sample of the SUP-AD dataset.

approach involves two key strategies: incorporating 3D per-
ception for critical object analysis, and high-frequency tra-
jectory refinement.
Integrating 3D Perception. We represent objects detected
by a 3D detector as O3D = {ci3D, b

i
3D}, where bi3D denotes

the i-th bounding box and ci3D denotes its category. These
3D bounding boxes are then back-projected onto 2D images
to derive corresponding 2D bounding boxes bi2D. We conduct
IoU matching between these 2D bounding boxes bi2D and bjc.
bjc are the bounding boxes of previously identified critical
objects Ocritical = {cjc, bjc}. We classify critical objects that
meet a certain approximate IoU threshold and belong to the
same category as matched critical objects Omatched

c , defined
as

Omatched
c = {cjc, bjc}, if exists cjc = ci2D

and aIoU(bjc, b
i
2D) > τ, (1)

aIoU(bjc, b
i
2D) =

Sbjc∩bi2D

Sbi2D

(2)

Those critical objects without a corresponding match in the
3D data are noted as Ounmatched

c .
In the scene analysis module, for Omatched

c , the center
coordinates, orientations, and historical trajectories of the
corresponding 3D objects are used as language prompts
for the model, assisting in object analysis. Conversely, for
Ounmatched

c , analysis relies solely on the language tokens de-
rived from the image. This novel use of 3D perception
results as prompts enables DriveVLM-Dual to understand
the locations and motions of critical objects more accurately,
enhancing the overall performance.
High-Frequency Trajectory Refinement. Compared to tra-
ditional planners, DriveVLM, due to its immense parameter
size inherent to Vision-Language Models (VLMs), exhibits

significantly slower speeds while generating a trajectory.
To achieve real-time, high-frequency inference capabilities,
we integrate it with a conventional planner to form a slow-
fast dual system, combining the advanced capabilities of
DriveVLM with the efficiency of traditional planning meth-
ods. After obtaining a trajectory from DriveVLM at low
frequency, denoted as Wslow, we take it as a reference tra-
jectory for a classical planner for high-frequency trajectory
refinement. In the case of an optimization-based planner,
Wslow serves as the initial solution for the optimization solver.
For a neural network-based planner, Wslow is used as an in-
put query, combined with additional input features f , and
then decoded into a new planning trajectory denoted as Wfast.
The formulation of this process can be described as:

Wfast = Planner([Wslow, f ]). (3)

This refinement step ensures that the trajectory produced
by DriveVLM-Dual (1) achieves higher trajectory quality,
and (2) meets real-time requirements. In practice, the two
branches operate asynchronously in a slow-fast manner,
where the planner module in the traditional autonomous
driving branch can selectively receive trajectory from the
VLM branch as additional input.

4. Task and Dataset

To fully exploit the potential of DriveVLM and DriveVLM-
Dual in handling complex and long-tail driving scenarios,
we formally define a task called Scene Understanding for
Planning (Section 4.1), together with a set of evaluation met-
rics (Section 4.2). Furthermore, we propose a data mining
and annotation protocol to curate a scene understanding and
planning dataset (Section 4.3).
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Driving Scenario 
Video Database

Long-tail Object Mining

Challenging Scenario Mining

Manual
Filtering

Video Keyframe
Selection

Scene 
Annotation Verification

Figure 3. The proposed data mining and annotation pipeline for constructing a scene understanding and planning dataset (above); Scenario
examples randomly sampled from the dataset (below) demonstrate the diversity and complexity of the dataset.

4.1. Task Definition

The Scene Understanding for Planning task is defined as
follows. The input comprises multi-view videos V from
surrounding cameras and optionally 3D perception results P
from a perception module. The output includes the following
components:
1. Scene Description E: Composed of weather condition

Eweather, time Etime, road condition Eroad, and lane condi-
tions Elane.

2. Scene Analysis S: Including object-level analysis and
scene-level summary S.

3. Meta Actions A: A sequence of actions representing
task-level maneuvers.

4. Decision Description D: A detailed account of the driv-
ing decisions.

5. Trajectory Waypoints W : The waypoints outlining the
planned trajectory of the ego vehicle.

4.2. Evaluation Metrics

To comprehensively evaluate a model’s performance, we care
about its interpretation of the driving scene and the decisions
made. Therefore, our evaluation has two aspects: scene
description/analysis evaluation and meta-action evaluation.
Scene description/analysis evaluation. Given the sub-
jective nature of human evaluation in scene description,
we adopt a structured approach using a pre-trained LLM.
This method entails comparing the generated scene descrip-
tion with a human-annotated ground truth description. The
ground truth description encompasses structured data such
as environmental conditions, navigation, lane information,
and critical events with specific objects, verbs, and their
influences. The LLM assesses and scores the generated de-
scriptions based on their consistency with the ground truth.
Meta-action evaluation. Meta-actions are a predefined set

of decision-making options. A driving decision is formu-
lated as a sequence of meta-actions. Our evaluation method
employs a dynamic programming algorithm to compare
the model-generated sequences with a manually annotated
ground truth sequence. The evaluation should also weigh
the relative importance of various meta-actions, designating
some as ‘conservative actions’ with a lower impact on the
sequence’s overall context. To increase robustness, we first
use the LLM to generate semantically equivalent alternatives
to the ground truth sequence to enhance robustness. The
sequence with the highest similarity to these alternatives
calculates the final driving decision score. More details of
the proposed metric are available in the Appendix B.

4.3. Dataset Construction

We propose a comprehensive data mining and annotation
pipeline, shown in Figure 3, to construct a Scene Under-
standing for Planning (SUP-AD) Dataset for the proposed
task. Specifically, we perform long-tail object mining and
challenging scenario mining from a large database to col-
lect samples, then we select a keyframe from each sample
and further perform scene annotation. Dataset statistics are
available in the Appendix A.
Long-tail object mining. According to real-world road
object distribution, we first define a list of long-tail object
categories, such as weird-shaped vehicles, road debris, and
animals crossing the road. Next, we mine these long-tail
scenarios using a CLIP-based search engine, capable of
mining driving data using language queries from a large
collection of logs. Following that, we perform a manual
inspection to filter out scenes inconsistent with the specified
categories.
Challenging scenario mining. In addition to long-tail ob-
jects, we are also interested in challenging driving scenarios,
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where the driving strategy of the ego vehicle needs to be
adapted according to the changing driving conditions. These
scenarios are mined according to the variance of the recorded
driving maneuvers.
Keyframe selection. Each scene is a video clip, it is essential
to identify the ‘keyframe’ to annotate. In most challenging
scenarios, a keyframe is the moment before a significant
change in speed or direction is required. We select this
keyframe 0.5s to 1s earlier than the actual maneuver, based
on comprehensive testing, to guarantee an optimal reaction
time for decision-making. For scenes that do not involve
changes in driving behavior, we select a frame that is relevant
to the current driving scenario as the keyframe.
Scene annotation. We employ a group of annotators to
perform the scene annotation, including scene description,
scene analysis, and planning, except for waypoints, which
can be auto-labeled from the vehicle’s IMU recordings. To
facilitate scene annotation, we make a video annotation tool
with the following features: (1) the annotators can slide the
progress bar back and forth to replay any part of a video;
(2) while annotating a keyframe, the annotator can draw
bounding boxes on the image together with language de-
scriptions; (3) annotators can select from a list of action and
decision candidates while annotating driving plans. Each
annotation is meticulously verified by 3 annotators for accu-
racy and consistency, ensuring a reliable dataset for model
training. Figure 2 illustrates a sample scenario with detailed
annotations.

5. Experiments
5.1. Settings

5.1.1 Datasets

SUP-AD dataset. The SUP-AD dataset is a dataset built
by our proposed data mining and annotation pipeline. It is
divided into train, validation, and test splits with a ratio of
7.5 : 1 : 1.5. We train models on the training split and use
our proposed scene description and meta-action metrics to
evaluate model performance on the validation/test split.
nuScenes dataset. The nuScenes dataset [6] is a large-
scale driving dataset of urban scenarios with 1000 scenes,
where each scene lasts about 20 seconds. Keyframes are
evenly annotated at a frequency of 2Hz over the entire dataset.
Following previous works [22, 24], we adopt Displacement
Error (DE) and Collision Rate (CR) as metrics to evaluate
models’ performance on the validation split.

5.1.2 Base Model

We use Qwen-VL [1] as our default large vision-language
model, which exhibits remarkable performance in tasks like
question answering, visual localization, and text recognition.
It contains a total of 9.6 billion parameters, including a

Table 1. Results on the test set of our proposed SUP-AD dataset.
†: Using the official API of GPT-4V. For Lynx and CogVLM, we
utilize the training split for fine-tuning purposes. In contrast, for
GPT-4V, we employ in-context learning.

Method Scene Description Meta-actions

Fine-tuning w/ Lynx [54] 0.46 0.15
Fine-tuning w/ CogVLM [44] 0.49 0.22
GPT-4V† [36] 0.38 0.19
DriveVLM w/ Qwen 0.71 0.37

Table 2. Planning results on the nuScenes validation dataset.
DriveVLM-Dual achieves the best performance. † means using per-
ception and occupancy prediction results from Uni-AD. ‡ denotes
cooperating with VAD [24]. All the models take ego states as input.

Method L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

NMP† [53] - - 2.31 - - - 1.92 -
SA-NMP† [53] - - 2.05 - - - 1.59 -
FF† [20] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO† [25] 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33
ST-P3 [21] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71

UniAD [22] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
VAD-Base [24] 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14

DriveVLM 0.18 0.34 0.68 0.40 0.10 0.22 0.45 0.27
DriveVLM-Dual† 0.17 0.37 0.63 0.39 0.08 0.18 0.35 0.20
DriveVLM-Dual‡ 0.15 0.29 0.48 0.31 0.05 0.08 0.17 0.10

visual encoder (1.9 billion), a vision-language adapter (0.08
billion), and a large language model (Qwen, 7.7 billion).
Images are resized to a resolution of 448× 448 before being
encoded by the vision encoder. During training, we randomly
select a sequence of images at the current time T s, T − 1s,
T − 2s, and T − 3s as input. The selected images ensure the
inclusion of the current time frame and follow an ascending
chronological order.

5.2. Main Results

SUP-AD. We present the performance of our proposed
DriveVLM with several large vision-language models
and compare them with GPT-4V, as shown in Table 1.
DriveVLM, utilizing Qwen-VL as its backbone, achieves the
best performance due to its strong capabilities in question
answering and flexible interaction compared to the other
open-source VLMs. Although GPT-4V exhibits robust ca-
pabilities in vision and language processing, its inability to
undergo fine-tuning, restricting it solely to in-context learn-
ing, often results in the generation of extraneous information
during scene description tasks. Under our evaluation metric,
the additional information is frequently classified as halluci-
nation, consequently leading to lower scores.
nuScenes. As shown in Table 2, DriveVLM-Dual achieves
state-of-the-art performance on the nuScenes planning task
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Table 3. Ablations of design choices on the validation set of
nuScenes. “Base” refers to only indicating the hierarchical plan-
ning results without our proposed CoT inference. “CO” represents
the addition of critical object analysis. “3D” denotes the inclusion
of 3D perception results as an auxiliary language prompt.

ID Base CO 3D L2 (m) ↓ Collision (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

1 ✓ 0.19 0.41 0.89 0.49 0.16 0.28 0.63 0.36
2 ✓ ✓ 0.20 0.38 0.75 0.44 0.15 0.29 0.61 0.35
3 ✓ ✓ ✓ 0.18 0.34 0.68 0.40 0.10 0.22 0.45 0.27

Table 4. Inference speed on the NVIDIA Orin platform. “Trad.
AD” represents end-to-end traditional autonomous driving method
similar to VAD [24].

Method Trad. AD DriveVLM DriveVLM-Dual

Inference time per scene 0.3s 1.5s 0.3s

when cooperating with VAD. It demonstrates that our
method, although tailored for understanding complex scenes,
also excels in ordinary scenarios. Note that DriveVLM-Dual
significantly improves over UniAD: it achieves a reduction
of 0.64 meters in terms of average planning displacement
error, and a 51% reduction of collision rate.

5.3. Ablation Study

Model Design. To better understand the significance of
our designed modules in DriveVLM, we conduct ablations
on different combinations of modules, as shown in Table 3.
The inclusion of critical object analysis enables our model
to identify and prioritize important elements in the driving
environment, enhancing the decision-making accuracy for
safer navigation. Integrating 3D perception data, our model
gains a refined understanding of the surroundings, which is
crucial for capturing the motion dynamics and improving
trajectory predictions.
Inference speed. The inference speed of DriveVLM and
DriveVLM-Dual are measured on the NVIDIA Orin plat-
form, shown in Table 4. Due to the huge number of parame-
ters of LLM, the inference speed of DriveVLM is an order
slower than the conventional autonomous driving method
similar to VAD, preventing it from running onboard. How-
ever, after cooperating with the traditional autonomous driv-
ing pipeline in a slow-fast cooperation pattern, the overall
latency depends on the speed of the fast branch, making
DriveVLM-Dual an ideal solution for real-world deploy-
ment.

5.4. Qualitative Results

Qualitative results of DriveVLM are shown in Figure 4. In
Figure 4a, DriveVLM accurately predicts the current scene
conditions and incorporates well-considered planning deci-

sions regarding the cyclist approaching us. In Figure 4b,
DriveVLM effectively comprehends the gesture of the traf-
fic police ahead, signaling the ego vehicle to proceed, and
also considers the person riding a tricycle on the right side,
thereby making sensible driving decisions. These qualitative
results demonstrate our model’s exceptional ability to un-
derstand complex scenarios and make suitable driving plans.
More visualization of our model’s output is shown in the
Appendix C.

Scene Condition:
Weather: Rainy.
Time: Day.
Road Environment: Urban Crossroad.
Alternative Lane: Intersection.
Ego Lane Position: DNA.

KeyEvent:
The ego vehicle is turning right on
the current road, and a person riding
an electric bicycle is entering the
ego vehicle's lane from the right
side of the intersection."

Meta Action: 
"Slow down",
"Turn right",
"Go straight slowly"

Decision Description:
Slow down and wait for the 
cyclist to pass before 
continuing to turn right.

(a)

Scene Condition:
Weather:Sunny.
Time:Evening.
Road Environment:Urban.
Alternative Lane:No lane on the road ahead.
Ego Lane Position:DNA.

Event Summary:
The ego vehicle proceeds at a slow pace,
and ahead on the road, there is a person
riding a tricycle moving slowly. Traffic
police are directing traffic to the left
front of the ego vehicle.

Meta Action: 
"Go straight slowly"

Decision Description:
Ensure a safe distance from the 
vehicles in front and on both 
sides while moving forward slowly.

(b)

Figure 4. Qualitative results of DriveVLM. The orange curves
represent the model’s planned future trajectories for the next 3
seconds.

6. Conclusion
In summary, we introduce DriveVLM and DriveVLM-Dual.
DriveVLM leverages VLMs, significantly progressing in
interpreting complex driving environments. The DriveVLM-
Dual further enhances these capabilities by synergizing exist-
ing 3D perception and planning approaches, effectively ad-
dressing the spatial reasoning and computational challenges
inherent in VLMs. Moreover, we define a scene under-
standing for planning task for autonomous driving, together
with evaluation metrics and dataset construction protocol.
Through rigorous evaluation, DriveVLM and DriveVLM-
Dual have demonstrated their ability to surpass state-of-the-
art methods in autonomous driving, especially in handling
intricate and dynamic scenarios. We believe this research of-
fers a roadmap for the development of safe and interpretable
autonomous vehicles in the future.
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A. SUP-AD Dataset

A.1. Meta-actions

Meta-action statistics. We use the meta-action sequence
to formally represent the driving strategy. Meta actions are
classified into 17 categories. We show the distribution of
each meta-action being the first/second/third place in the
meta-action sequence, as shown in Figure 5. It indicates that
the meta-actions are quite diverse in the SUP-AD dataset.
We also show the distribution of the length of meta-actions
per scene in Figure 6. Most scenes contain two or three meta-
actions, and a few scenes with complex driving strategies
contain four or more meta-actions.

Annotation of meta-actions. The meta-action sequence
for each driving scene is manually annotated based on the ac-
tual driving strategy in the future frames. These meta-actions
are designed to encompass a complete driving strategy and
are structured to be consistent with the future trajectory of
the ego vehicle. They can be divided into three primary
classes:
1. Speed-control actions. These actions can be discerned

from acceleration and braking signals within the ego state
data. They include speed up, slow down, slow down
rapidly, go straight slowly, go straight at a constant
speed, stop, wait, and reverse.

2. Turning actions. Deduced from steering wheel signals,
these actions consist of turn left, turn right, and turn
around.

3. Lane-control actions. Encompassing lane selection de-
cisions, these actions are derived from a combination of
steering wheel signals and either map or perception data.
They involve change lane to the left, change lane to the
right, shift slightly to the left, and shift slightly to the
right.

A.2. Scenario Categories

As shown in Figure 7, the SUP-AD Dataset encompasses
diverse driving scenarios, spanning over 40 categories. De-
tailed explanations for certain scenario categories are pro-
vided below:

AEB Data: Automatic Emergency Braking (AEB) data.
Road Construction: A temporary work zone with cau-

tion signs, barriers, and construction equipment ahead.
Close-range Cut-ins: A sudden intrusion into the lane of

the ego vehicle by another vehicle.
Roundabout: A type of traffic intersection where vehi-

cles travel in a continuous loop.
Animals Crossing Road: Animals crossing the road in

front of the ego vehicle.
Braking: Brake is pressed by human driver of the ego

vehicle.

Figure 5. Distribution of each meta action being the first, second,
and third place of the meta action sequence, respectively.

Figure 6. Distribution of the length of meta actions per scene.

Traffic Police Officers: Traffic police officers managing
and guiding traffic.

Blocking Traffic Lights: A massive vehicle obscuring
the visibility of the traffic signal.

Cutting into Other Vehicle: Intruding into the lane of
another vehicle ahead.

Ramp: A curved roadway that connects the main road to
the branch road in highway.

Debris on the Road: Road with different kinds of debris.
Narrow Roads: Narrow roads that require cautious navi-

gation.
Pedestrians Popping Out: Pedestrians popping out in

front of the ego vehicle, requiring slowing down or braking.
People on Bus Posters: Buses with posters, which may

interfere the perception system.
Merging into High Speed: Driving from a low-speed

road into a high-speed road, requiring speeding up.
Barrier Gate: Barrier gate that can be raised obstructing

the road.
Fallen Trees: Fallen trees on the road, requiring cautious

navigation to avoid potential hazards.
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Figure 7. Diverse driving scenarios in the SUP-AD dataset.

13



Complex Environments: Complex driving environments
that requiring cautious navigation.

Mixed Traffic: A congested scenario where cars, pedes-
trians, and bicycles appear on the same or adjacent roadway.

Crossing Rivers: Crossing rivers by driving on the
bridge.

Screen: Roads with screens on one side, which may
interfere the perception system.

Herds of Cattle and Sheep: A rural road with herds of
cattle and sheep, requiring careful driving to avoid causing
distress to these animals.

Vulnerable Road Users: Road users which are more
susceptible to injuries while using roads, such as pedestrians,
cyclists, and motorcyclists.

Road with Gallet: A dusty road with gallet scattered
across the surface.

The remaining scenario categories are: Motorcycles and
Trikes, Intersection, People carrying Umbrella, Vehicles Car-
rying Cars, Vehicles Carrying Branches, Vehicles with Pipes,
Strollers, Children, Tunnel, Down Ramp, Sidewalk Stalls,
Rainy Day, Crossing Train Tracks, Unprotected U-turns,
Snowfall, Large Vehicles Invading, Falling Leaves, Fire-
works, Water Sprinklers, Potholes, Overturned Motorcycles,
Self-ignition and Fire, Kites, Agricultural Machinery.

A.3. Annotation Examples

We provide more examples of annotation contents in Fig-
ure 8, 9, 10, 11, 12, and 13. The scenario categories of these
examples are overturned bicycles and motorcycles, herds of
cattle and sheep, collapsed trees, crossing rivers, barrier gate,
and snowfall respectively.

B. Evaluation Method
The ability of an autonomous driving system to accurately
interpret driving scenes and make logical, suitable decisions
is of paramount importance. As presented in this paper, the
evaluation of VLMs in autonomous driving concentrates on
two primary components: the evaluation of scene descrip-
tion/analysis and the evaluation of meta-actions.

B.1. Scene Description/Analysis Evaluation

In terms of scene description/analysis evaluation, the process
of interpreting and articulating driving scenes is subject to
inherent subjectivity, as there are numerous valid ways to ex-
press similar descriptions textually, which makes it difficult
to effectively evaluate the scene description using a fixed
metric. To overcome this challenge, we utilize GPT-4 [36] to
evaluate the similarity between the scene descriptions gener-
ated by the model and the manually annotated ground truth.
Initially, we prompt GPT-4 to extract individual pieces of
information from each scene description. Subsequently, we
score and aggregate the results based on the matching status
of each extracted piece of information.

The ground truth labels for scene descriptions encom-
pass both environment descriptions and event summaries.
Environmental condition description includes weather con-
ditions, time conditions, road environment, and lane condi-
tions. Event summaries are the characteristics and influence
of critical objects. We employ GPT-4 to extract unique key
information from both environment descriptions and event
summaries. The extracted information is then compared and
quantified. Each matched pair is assigned a score, which
is estimated based on the extent of the matching, whether
complete, partial, or absent. Instances of hallucinated infor-
mation incur a penalty, detracting from the overall score. The
aggregate of these scores constitutes the scene description
score.

Score =
1.0× nmatched + 0.5× npartial

ngt

−0.25× nhallucination

ngt

(4)

The prompt for GPT-4 in evaluating scene descriptions
is carefully designed, as shown in Table 5. Initially, a role
prompt is employed to establish as an intelligent and logi-
cal evaluator, possessing a comprehensive understanding of
appropriate driving styles. This is followed by specifying
the input format, which informs GPT-4 that its task involves
comparing an output description with a ground truth de-
scription. This comparison is based on the extraction and
analysis of key information from both descriptions. Lastly,
the prompt outlines the criteria for scoring, as well as the
format for the evaluation output, ensuring a structured and
systematic approach to the evaluation process.

B.2. Meta-action Evaluation

The evaluation process for the meta-action sequence must
consider both the quantity and the sequential arrangement
of the matched meta-actions. We employ dynamic pro-
gramming to compare the model’s output and the annotated
ground truth. Our dynamic programming approach is similar
to the method utilized in identifying the longest common
subsequence, albeit with two supplementary considerations.

The first consideration acknowledges the unequal weight-
ing of different meta-actions. For instance, certain meta
actions such as “Slow Down", “Wait", and “Go Straight
Slowly" exhibit a greater emphasis on attitude rather than
action. The presence or absence of these actions from a meta-
action sequence does not alter the basic semantic essence of
driving decisions but rather modifies the driving strategy to
be either more assertive or more cautious. For example, a
meta action sequence of “Slow Down -> Stop -> Wait" con-
veys a similar driving decision as a sequence with only the
meta action “Stop". Consequently, these sequences should
not incur a penalty comparable to other meta actions such

14



System Prompt:
You are a smart and logical evaluator with extensive driving experience, and you will try your best to give reasonable and
logical evaluation result.
Input Prompt:
Given two driving scenario descriptions, one is the reference description, the other is the output description from a model.
Please extract key information from the reference description and use it as comparison standards to compare the proximity of
the output descriptions. Additionally, evaluate the completeness of each piece of information. Key information extracted can
be classified into environmental conditions and critical events. Environmental condition information includes weather, time,
road environment, and lane conditions. A critical event describes the event related to ego vehicleś driving decisions, which is
usually given in the format of critical object + verb/adj + influence on ego vehicle. An example of a critical event is like this:
A construction zone is blocking the ego lane and the right lane in front, so the car needs to go around to avoid it. Now I will
give you the reference description and the output description.
The reference description:
Weather: Sunny. || Time: Day. || Road Environment: Urban. || Lane Options: Left Lane, Own Lane, Right Lane. || Ego Lane
Position: Middle Lane.
Critical Events: There are police officers ahead inspecting passing vehicles. The police officer in front of your lane is signaling
you to stop for inspection. There are also vehicles queuing in the left lane. The right lane is a merging lane and is currently
separated, so you cannot change lanes to the right.
The output description:
Weather: Sunny. || Time: Day.
There is a vehicle driving in the distance in front of you. There are traffic police on the left and right, and the traffic police
signal to stop.
Compare the two descriptions using extracted key information and output a similarities score on the scale from 0 to 1.0 and
an explanation to describe the logic of calculating the similarity scale. Each matched key information scores 1.0, and each
partially matched key information scores 0.5. Hallucinations will be penalized as well. If any key information exists in the
output but not in the reference, a score of -0.25 will be assigned. The final score is the total score divided by the number
of key information extracted in the reference description. For example, if the total score is 1.5, and the total number of key
information in reference description is 3, then the final score would be 1.5/3 = 0.5. Please output the detailed extraction and
evaluation process.
Response:
Reference description key information:
1. Weather: Sunny (environmental conditions)
2. Time: Day (environmental conditions)
3. Road Environment: Urban (environmental conditions)
4. Lane Options: Left Lane, Own Lane, Right Lane (environmental conditions)
5. Ego Lane Position: Middle Lane (environmental conditions)
6. Police officers ahead inspecting vehicles (critical event)
7. The police officer in front of ego vehicle signalling to stop (critical event)
8. Vehicles queuing in the left lane (critical event)
9. Cannot change to the right lane as itś an merging lane and currently separated (critical event)
Output description key information:
1. Weather: Sunny.
2. Time: Day.
3. Vehicle driving in the distance in front of driver
4. Traffic police on the left and right
5. Traffic police signal to stop
By comparing the output to the reference:
- Key information 1, 2, 6, and 7 are matched, each for 1.0 points(weather and time, police officers and their signal to stop)
- Key information 3 in the output is not mentioned in reference, deduction of -0.25 points.
No scores for:
- Key information 3, 4, 5, 8, and 9.
Total score = (1.0 + 1.0 + 1.0 + 1.0 - 0.25) / 9 = 0.417.

Table 5. Evaluation process of scene description by GPT-4. Our proposed evaluation method is not only capable of extracting and
evaluating information from structured scene descriptions but is also applicable to unstructured descriptions.
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as “Turn Left" or “Change Lane to the Right". Therefore,
these are designated as “conservative actions”, and a reduced
penalty is applied when they do not match during sequence
evaluation.

The second consideration addresses the potential seman-
tic equality among different meta-action sequences. For
example, the sequences “Change Lane to the Left -> Speed
Up -> Go Straight At a Constant Speed -> Change Lane
to the Right" and “Change Lane to the Left -> Speed Up
Rapidly -> Go Straight At a Constant Speed -> Change
Lane to the Right" might both represent valid approaches
to overtaking a slow-speed vehicle ahead. Recognizing that
different meta-action sequences might convey similar mean-
ings, we initially use GPT-4 to generate variant sequences
that have comparable semantic meanings, in addition to the
unique ground truth meta-action sequence, as shown in Ta-
ble 6. In the subsequent sequence-matching phase of the
evaluation, all these variations, together with the manually
annotated ground truth, are taken into consideration. The
highest-scoring matching is then adopted as the definitive
score for the final decision evaluation.

The state of dynamic programming is saved in a 2D ma-
trix, wherein each row corresponds to a meta action in the
ground truth action sequence, and each column corresponds
to a meta action in the model output action sequence, noted
as S r, c. The dynamic programming initiates recursive cal-
culations beginning from the first meta action of both se-
quences. Each element of the 2D matrix encompasses the
optimal total score at the current matching position, as well
as the preceding matching condition that yielded the optimal
matching. In our dynamic programming algorithm, three
transition equations govern distinct cases: Smissing for miss-
ing matching, Sredundant for redundant matching, and Smatching
for successful matching. Successful matching occurs when
the meta action is identical at the rth position in the refer-
ence sequence and the cth position in the model-generated
sequence. In the case of missing matching, the meta action
at the rth position in the reference sequence is unmatched,
prompting a comparison with the r − 1th position in the ref-
erence sequence and the cth position in the model-generated
sequence. Conversely, redundant matching implies that the
meta action at the cth position in the model-generated se-
quence is unmatched, leading to further examination of the
rth position in the reference and the c− 1th position in the
model-generated sequence. The transformation equations
for these cases are as follows:

S r, c
missing = S r−1, c − pmissing,

S r, c
redundant = S r, c−1 − predundant,

S r, c
matching = S r−1, c−1 + smatching,

S r, c = max(S r, c
missing, S

r, c
redundant, S

r, c
matching),

(5)

where smatching = 1.0 represents the reward score after

a successful matching. If an action considered missing or
redundant is classified as a conservative action, the penalties
pmissing and predundant are quantified as half of smatching, i.e.,
0.5. Conversely, if an action is not conservative, both penal-
ties are assigned the same magnitude as smatching, i.e., 1.0.
This approach is based on the premise that omitting a crucial
meta action or inaccurately introducing a non-existent one
equally hampers the effectiveness of the action sequence.
The final score Scoreaction should be divided by the length
of the selected reference meta-action sequence, formulated
as follow:

Score action =
S r, c

Nr
(6)

C. Qualitative Results
To further demonstrate the effectiveness and robustness of
our proposed DriveVLM, we provide additional visualiza-
tion results in Figure 14, 15, 16, 17, and 18. In Figure 14,
DriveVLM recognizes the slowly moving vehicle ahead and
provides a driving decision to change lanes for overtaking. In
Figures 15 and 16, DriveVLM accurately identifies the type
of unconventional vehicles and a fallen tree, demonstrating
its capability in recognizing long-tail objects. In Figure 17,
the traffic police signaling to proceed with hand gestures
has been accurately captured by DriveVLM. In Figure 18,
DriveVLM successfully recognizes the road environment
of a roundabout and generates a planned trajectory with a
curved path.
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Prompt:
Given a predefined set of action tokens and a sequence of reference driving actions, find all alternative sequences of actions
that have similar meanings but choose slightly different action tokens from the predefined action tokens.
Predefined action tokens: [Speed up, Slow down, Speed up rapidly, Slow down rapidly, Go straight slowly, Go straight at a
constant speed, Turn left, Turn right, Change lane to the left, Change lane to the right, Shift slightly to the left, Shift slightly to
the right, Stop, Wait, Turn around, Reverse].
For example, if the reference driving action sequence is: Slow down -> Shift slightly to the right -> Go straight at a constant
speed, alternative action sequences with similar meanings could be:
1. Slow down -> Change lane to the right -> Go straight at a constant speed;
2. Slow down rapidly -> Shift slightly to the right -> Go straight at a constant speed;
3. Slow down -> Change lane to the right -> Go straight slowly;
4. Slow down -> Shift slightly to the right -> Go straight slowly.
Now the reference action sequence is: Slow down -> Shift slightly to the right -> Go straight at a constant speed. What are the
alternative action sequences?

Response:
Given the reference sequence: "Slow down -> Shift slightly to the right -> Go straight at a constant speed." Alternative action
sequences with similar meanings based on the provided action tokens are: 1. Slow down -> Change lane to the right -> Go
straight at a constant speed.
2. Slow down rapidly -> Shift slightly to the right -> Go straight at a constant speed.
3. Slow down -> Change lane to the right -> Go straight slowly.
4. Slow down -> Shift slightly to the right -> Go straight slowly. You’ve provided this example in your question.
Based on the tokens and the context, these are indeed appropriate alternative sequences.

Table 6. Example of generating alternative action sequences by GPT-4.

Scene Summary: The ego vehicle changes lanes from the wrong-way lane to the right-way lane, with a bicycle fallen in front.

Meta Action: ["Slow down”, "Change lane to the right”, "Go straight slowly"]

Decision Description: Slow down and make sure there's no vehicle coming from the right rear before 

changing lanes to the right.

Weather: Cloudy

Time: Daytime

Class: Bicycle

Characteristics: Fallen in front of 

the vehicle

Influence: Blocking vehicle 

future path

Critical Object:

Road Environment:     Urban

Lane Options:         Right Lane

Figure 8. An example of overturned bicycles and motorcycles in the SUP-AD dataset. A bicycle has fallen in front of the ego vehicle,
requiring the ego vehicle to change lanes.
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Scene Summary: The ego vehicle is traveling straight in the current lane, and there is a group of slow-moving cows ahead in the lane.

Meta Action: ["Slow down”, "Go straight slowly"]

Decision Description: Reduce speed and proceed slowly while maintaining a safe distance from the 

group of cows.

Weather: Cloudy

Time: Daytime

Class: A herd of cows

Characteristics: Slowly moving 

ahead in the ego 

lane

Influence: Influencing the 

driving speed of 

the ego vehicle

Critical Object:

Road Environment:     Mountain

Lane Options:         Own Lane

Figure 9. An example of herds of cattle and sheep in the SUP-AD dataset. A group of cattle move slowly in front of the ego vehicle,
requiring the ego vehicle to proceed slowly and maintain a safe distance from the cattle.

Scene Summary: The ego vehicle is moving forward on the current road, and a tree suddenly falls towards the ego vehicle from the left front side.

Meta Action: [“Slow down rapidly”, “Stop”,” Wait”]

Decision Description: Immediately decelerate and come to a stop, wait for the fallen tree to be cleared 

before resuming driving.

Weather: Cloudy

Time: Daytime
Class: Tree

Characteristics: Leaning towards 

our vehicle on the 

left front

Influence: Blocking our 

vehicle from 

moving forward

Critical Object:

Road Environment:     National Road

Lane Options:   Own Lane

Figure 10. An example of collapsed trees in the SUP-AD dataset. A tree suddenly falls towards the ego vehicle, requiring the ego vehicle to
decelerate immediately.
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Scene Summary: The ego vehicle travels at a constant speed along the current road towards a bridge ahead. The bridge width allows only a single vehicle to pass.

Meta Action: [“Slow down”, “Go straight slowly”]

Decision Description: Brake and decelerate, drive slowly towards the bridge without stopping on it.

Weather: Cloudy

Time: Daytime

Class: Narrow bridge

Characteristics: Passable width for 

only a single 

vehicle

Influence: No stopping 

allowed

Critical Object:

Road Environment:     Narrow Bridge

Lane Options:   No Lane Marking

Figure 11. An example of crossing rivers in the SUP-AD dataset. The ego vehicle is going across a bridge of which width allows only a
single vehicle to pass, requiring the ego vehicle to drive without stopping.

Scene Summary: The ego vehicle turns left towards the park entrance, a horizontal bar is blocking the entrance ahead.

Meta Action: [“Slow down”, “Stop”, "Wait"]

Decision Description: "Slow down and stop in front of the horizontal barrier, waiting for permission to 

continue."

Weather: Cloudy

Time: Daytime

Class: Crossbar

Characteristics: At the entrance/exit 

ahead

Influence: Blocking the 

vehicle's driving 

route

Critical Object:

Road Environment:     Park

Lane Options:   No Lane Marking

Figure 12. An example of barrier gate in the SUP-AD dataset. A horizontal barrier blocks the entrance of a park, requiring the ego
vehicle to stop and wait for permission to continue.
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Scene Summary: The ego vehicle is currently driving slowly along a snow-covered road, following the snow-free tire tracks on the road surface.

Meta Action: [“Go straight slowly”]

Decision Description: "Continue to move forward cautiously at a slow speed.”

Weather: Snowy

Time: Daytime
Critical Object: None

Road Environment:  Snow-covered 
Road

Lane Options:   No Lane Marking

Figure 13. An example of snowfall in the SUP-AD dataset. Most of the road is covered by snow, requiring the ego vehicle to move forward
cautiously by following the snow-free tire tracks.
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Figure 14. Visualization of DriveVLM’s output. DriveVLM recognizes the slowly moving vehicle ahead and provides a driving decision
for changing lanes to overtake.
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Figure 15. Visualization of DriveVLM’s output. DriveVLM has identified the type of the unconventional vehicle ahead.
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Figure 16. Visualization of DriveVLM’s output. DriveVLM precisely detect the fallen tree and its position, subsequently planning an
appropriate detour trajectory.
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Figure 17. Visualization of DriveVLM’s output. The traffic police signaling to proceed with hand gestures has been accurately captured by
DriveVLM.
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Figure 18. Visualization of DriveVLM’s output. DriveVLM successfully recognizes the road environment of a roundabout and generates a
planned trajectory with a curved path.
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