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Figure 1. We present DriveLM: A new task, dataset, metrics, and baseline for end-to-end autonomous driving. Inspired by [8], DriveLM
considers Graph Visual Question Answering (GVQA), where question-answer pairs are interconnected via logical dependencies at the
object-level, i.e., interactions between object pairs, and the task-level, e.g., perception → prediction → planning → behavior (discretized
action described in natural language) → motion (continuous trajectory). We propose DriveLM-Data for training DriveLM-Agent, a
baseline for GVQA. We validate its effectiveness using the DriveLM-Metrics on challenging settings requiring zero-shot generalization.

Abstract

We study how vision-language models (VLMs) trained
on web-scale data can be integrated into end-to-end driv-
ing systems to boost generalization and enable interac-
tivity with human users. While recent approaches adapt
VLMs to driving via single-round visual question answer-
ing (VQA), human drivers reason about decisions in mul-
tiple steps. Starting from the localization of key objects,
humans estimate object interactions before taking actions.
The key insight is that with our proposed task, Graph VQA,
where we model graph-structured reasoning through per-
ception, prediction and planning question-answer pairs, we
obtain a suitable proxy task to mimic the human reason-

∗Equal contribution. †Equal co-advising.

ing process. We instantiate datasets (DriveLM-Data) built
upon nuScenes and CARLA, and propose a VLM-based
baseline approach (DriveLM-Agent) for jointly perform-
ing Graph VQA and end-to-end driving. The experiments
demonstrate that Graph VQA provides a simple, princi-
pled framework for reasoning about a driving scene, and
DriveLM-Data provides a challenging benchmark for this
task. Our DriveLM-Agent baseline performs end-to-end au-
tonomous driving competitively in comparison to state-of-
the-art driving-specific architectures. Notably, its benefits
are pronounced when it is evaluated zero-shot on unseen
objects or sensor configurations. We hope this work can be
the starting point to shed new light on how to apply VLMs
for autonomous driving. To facilitate future research, all
code, data, and models are available to the public.

1

ar
X

iv
:2

31
2.

14
15

0v
1 

 [
cs

.C
V

] 
 2

1 
D

ec
 2

02
3

https://github.com/OpenDriveLab/DriveLM


1. Introduction

Current Autonomous Driving (AD) stacks are still lacking
crucial capabilities [8, 11]. One key requirement is general-
ization, which involves the ability to handle unseen scenar-
ios or unfamiliar objects. A secondary requirement pertains
to the interaction of these models with humans, highlighted
for example by EU regulations that mandate explainability
in deployment [3]. Furthermore, unlike today’s AD mod-
els, humans do not navigate based on geometrically precise
bird’s-eye view (BEV) representations [13, 26, 39]. Instead,
humans implicitly perform object-centric perception, pre-
diction, and planning (which we refer to as P1−3): a rough
identification and localization of key objects, followed by
reasoning about their possible movement and aggregation
of this information into a driving action [49, 62].

Simultaneously, another field has been forging ahead:
Vision-Language Models (VLMs) [40, 45, 73, 83]. These
models have several strengths. First, they hold a base un-
derstanding of the world from internet-scale data that could
potentially facilitate generalization for planning in AD. In
fact, this sort of generalization has already been achieved by
VLMs for simpler robotics tasks [18, 85]. Second, the use
of language representations as an input and output offers a
platform for human-friendly interaction with these models,
unlike bounding boxes or trajectories that are more com-
mon to current methods [14, 25, 41, 58]. Finally, VLMs
are able to make decisions in multiple steps linked by log-
ical reasoning [4, 16, 75, 77, 82, 85]. Importantly, even
though they reason in multiple separate steps, VLMs are
end-to-end differentiable architectures, a characteristic that
is highly desirable for autonomous driving [8].

Recent work towards enabling the application of VLMs
to AD systems falls into two categories: scene-level or sin-
gle object-level Visual Question Answering (VQA). Scene-
level VQA refers to the task of describing the driving be-
havior by one or two supporting reasons, e.g., “The car
is moving into the right lane because it is safe to do
so.” [34, 35]. Single object-level VQA formulates the un-
derstanding of the ego vehicle’s response to a single ob-
ject by a chain of QAs in the form of “what-which-where-
how-why”, e.g., “The ego vehicle stops because there is a
pedestrian in a white shirt crossing the intersection in front
of the ego vehicle and it does not want to crash into the
pedestrian.” [47, 55, 59]. Unfortunately, neither of these
paradigms provides a suitable proxy task to mimic the P1−3

reasoning process in humans, who consider multiple objects
and reason about each in multiple steps. Therefore, in this
paper, we propose a new task, along with corresponding
datasets and a baseline model architecture (Fig. 1).

Task. Graph Visual Question Answering (GVQA) in-
volves formulating P1−3 reasoning as a series of question-
answer pairs (QAs) in a directed graph. Its key differ-

ence to the aforementioned VQA tasks for AD is the avail-
ability of logical dependencies between QAs which can be
used to guide the answering process. GVQA also encom-
passes questions regarding behavior and motion planning,
with dedicated metrics (details in Section 2).

Datasets. DriveLM-nuScenes and DriveLM-CARLA
consist of annotated QAs, arranged in a graph, linking im-
ages with driving behavior through logical reasoning. In
comparison to existing benchmarks, they provide signifi-
cantly more text annotations per frame (Fig. 2 and Table 1).
We pair these training datasets with challenging test data for
evaluating zero-shot generalization.

Model. DriveLM-Agent employs a trajectory tokenizer
that can be applied to any general VLM [40, 45, 53, 83],
coupled with a graph prompting scheme that models logi-
cal dependencies as context inputs for VLMs. The result
is a simple, elegant methodology to effectively repurpose
VLMs for end-to-end AD (Section 3).

Our experiments provide encouraging results. We find
that GVQA on DriveLM is a challenging task, where cur-
rent methods obtain moderate scores and better model-
ing of logical dependencies is likely necessary to achieve
strong QA performance. Even so, DriveLM-Agent already
performs competitively to state-of-the-art driving-specific
models [26] when tested in the open-loop planning setting,
despite its task-agnostic and generalist architecture. Fur-
thermore, employing a graph structure improves zero-shot
generalization, enabling DriveLM-Agent to correctly han-
dle novel objects unseen during training or deployment on
the Waymo dataset [63] after training only on nuScenes [5]
data. From these results, we believe that improving GVQA
holds great potential towards building autonomous driving
agents with strong generalization.

2. DriveLM: Task, Data, Metrics
Human drivers usually decompose their decision-making
process into distinct stages that follow a logical progression
which encompasses the identification and localization of
key objects, their possible future action and interaction, and
ego planning based on all this information [22, 46]. This in-
spires us to propose the GVQA as the critical ingredient of
DriveLM, which serves as a suitable proxy task to mimic the
human reasoning process. Within this section, we illustrate
the formulation of the GVQA task (Section 2.1), introduce
DriveLM-Data (Section 2.2) to exemplify the instantiation
of GVQA using prominent driving datasets, and overview
the DriveLM-Metrics used for evaluation (Section 2.3).

2.1. DriveLM-Task: GVQA

We organize all the Question Answer pairs (QAs) for an im-
age frame into a graph structure, denoted by G=(V,E). V
stands for the set of vertices, where each vertex represents a
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Figure 2. (Left) Annotation Pipeline: In DriveLM-nuScenes, we adopt a semi-rule-based QA labeling pipeline, where both the ground
truth annotation in nuScenes/OpenLane-V2 and feedback from human annotators are used. A critical part of our pipeline is the multi-round
quality check, which guarantees high data quality at reasonable costs. In DriveLM-CARLA, we meet the same standards while exploiting a
fully rule-based QA labeling pipeline instead. (Right) Question Distribution: The questions in our dataset cover various specific aspects
of driving tasks, most of which are annotated by human annotators, making this a suitable proxy for human-like driving reasoning.

QA pair v=(q, a) associated with one or more key objects
in the scenario. The key difference between GVQA and
ordinary VQA is that the QAs in GVQA have logical de-
pendencies, which we formulate as the edges between the
vertices. E ⊆V ×V , is a set of directed edges, where each
edge e=(vp, vc) connects the parent QA and the child QA.
We formulate the edge set E by incorporating two dimen-
sions: object-level and task-level edges. At the object level,
we construct the logical edges e∈E to represent the impact
of interactions between different objects. For example, the
planning QA node for the sedan is influenced by the per-
ception QA node of the pedestrian in the illustration from
Fig. 1 (center). At the task-level, we establish the logical
edges e∈E to capture the logical chain of different reason-
ing stages:
• Perception (P1): identification, description, and localiza-

tion of key objects in the current scene.
• Prediction (P2): estimation of possible action/interaction

of key objects based on perception results.
• Planning (P3): possible safe actions of the ego vehicle.
• Behavior (B): classification of driving decision.
• Motion (M ): waypoints of ego vehicle future trajectory.

The concepts of perception, prediction, and planning
(P1−3) are similar to those in end-to-end AD [8], while the
concepts of motion and behavior are based on the ego ve-
hicle future trajectory. Specifically, we define the motion
M as the ego vehicle future trajectory, which is a set of N
points with coordinates (x, y) in bird’s-eye view (BEV), de-
noted as M = {(x0, y0), (x1, y1), ..., (xN , yN )}. Each point
is the offset between the future position and the current po-
sition by a fixed time interval. Then, the distance for x, y at
each time interval is computed as:

{x, y}dist = {(δx,1, δy,1), ..., (δx,N , δy,N )}, (1)

where δx,i = xi − xi−1 and δy,i = yi − yi−1, for i =

1, 2, . . . , N. The goal of the behavior representation is to
serve as an interface from P1−3 to M . To obtain a behavior
representation, we map the mean of xdist and ydist to one of
the predefined bins, where each bin corresponds to a cate-
gory in either speed or steering. These are denoted as Bsp

and Bst respectively. In this work, we consider 5 bins:

Bsp ∈ {fast2,fast1,moderate,slow1,slow2},
Bst ∈ {left2,left1,straight,right1,right2},

where the number in the subscript indicates the intensity.
The combination of the speed and steering categories for
a trajectory form its behavior category as B = (Bsp, Bst).
While we use a simple definition of B as a starting point for
research on driving with VLMs, we note that our formula-
tion supports the incorporation of more abstract behaviors
such as a lane changes or overtaking.

2.2. DriveLM-Data

In order to provide comprehensive and accurate QAs with
the graph structure defined in Section 2.1, we introduce
DriveLM-nuScenes and DriveLM-CARLA. Since there are
significant disparities between nuScenes and CARLA, the
collection methods and statistics of these datasets differ.

DriveLM-nuScenes. We divide the annotation process
into three steps: selecting key frames from video clips,
choosing key objects within these key frames, and subse-
quently annotating the frame-level P1−3 QAs for these key
objects. A portion of the Perception QAs are generated
from the nuScenes [5] and OpenLane-V2 [70] ground truth,
while the remaining QAs are manually annotated. As we
manually annotate the vast majority of data in DriveLM-
nuScenes, quality is particularly crucial for this portion.
When annotating, we conduct multiple rounds of rigorous
quality checks. In each round, we categorize the data into
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Dataset Source Dataset # Frames
Avg. captions / QA

per annotated frame
Total captions / QA

in Perception
Total captions / QA

in Prediction
Total captions / QA

in Planning
Logic among

captions/QA pairs

nuScenes-QA [55] nuScenes 34,149 13.5 460k∗∗ ✗ ✗ None
nuPrompt [79] nuScenes 34,149 1.0 35k∗ ✗ ✗ None
HAD [35] HDD 25,549 1.8 25k ✗ 20k None
BDD-X [34] BDD 26,228 1 26k ✗ ✗ None
DRAMA [47] DRAMA 17,785 5.8 85k ✗ 17k Chain
Rank2Tell [59] Rank2Tell 5,800 - - ✗ - Chain

DriveLM-nuScenes nuScenes 4,871 91.4 144k∗ 153k 146k Graph
DriveLM-CARLA CARLA 183,373 20.5 2.46M∗∗ 578k∗∗ 714k∗∗ Graph

Table 1. Comparison of DriveLM-nuScenes & -CARLA with Existing Datasets. ∗ indicates semi-rule-based labeling (w/ human
annotators), ∗∗ indicates fully-rule-based (no human annotators), and - means publicly unavailable. DriveLM-Data significant advances
annotation quantity, comprehensiveness (covering perception, prediction and planning), and logic (chain to graph).

different batches and inspect ten percent of the data in each
batch. If the qualification rate of manually annotated data in
this ten percent does not meet expectations, we request the
annotators to re-label all data in the batch. In Fig. 2 (left),
we showcase an example of the QA annotation pipeline,
where all questions undergo quality checks according to our
standards. As a result, DriveLM-nuScenes stands out from
previously proposed datasets with its larger scale, greater
comprehensiveness, and more complex structure (See Ta-
ble 1). These QAs cover various aspects of the driving pro-
cess, ranging from perception and prediction to planning,
providing a comprehensive understanding of autonomous
driving scenarios as shown in Fig. 2 (right).

DriveLM-CARLA. We collect data using CARLA 0.9.14
in the Leaderboard 2.0 framework [17] with a privileged
rule-based expert [30]. We set up a series of routes in urban,
residential, and rural areas and execute the expert on these
routes. During this process, we collect the necessary sensor
data, generate relevant QAs based on privileged informa-
tion about objects and the scene, and organize the logical
relationships to connect this series of QAs into a graph. We
generate data and labels at 20 FPS. This process has the ad-
vantage of straightforward scalability since we only need to
define route and scenario settings in CARLA and the subse-
quent steps can be executed automatically. The rule-based
annotation pipeline is illustrated in Fig. 2 (left). Including
3.7M QAs, our DriveLM-CARLA stands out as the largest
driving-language benchmark in terms of total textual con-
tent among existing benchmarks as shown in Table. 1.

2.3. DriveLM-Metrics

To evaluate GVQA, the DriveLM-Metrics consist of three
components for evaluating motion M , behavior B, and
P1−3. For measuring the performance of the motion stage,
we use standard metrics from the nuScenes and Waymo
benchmarks: average and final displacement error, (ADE,
FDE), and the collision rate on the predicted trajectory, fol-
lowing UniAD [26]. We evaluate behavior predictions by
the classification accuracy, along with a breakdown of the
overall accuracy into its steering and speed components. Fi-
nally, we measure the P1−3performance using two metrics.

SPICE [2] is a prevailing metric used in VQA and image
captioning, which calculates the structure similarity of pre-
dicted texts with ground truth while ignoring the semantic
meanings. Simultaneously, we employ GPT Score to mea-
sure the semantic alignment of answers and complement
the SPICE metric. Specifically, the question, the ground
truth answer, the predicted answer, and a prompt asking
for a numerical score of the answer are sent to ChatGPT-
3.5 [50, 51]. We parse the text returned to get the score,
where a higher score indicates better semantic accuracy.

3. DriveLM-Agent: A GVQA Baseline
In this section, we present DriveLM-Agent, a baseline ap-
proach for the GVQA task detailed in Section 2. DriveLM-
Agent is built upon a general vision-language model and
can therefore exploit underlying knowledge gained during
pre-training. Our overall goal involves translating an image
into the desired ego vehicle motion (M ) through the dif-
ferent stages of VQA (P1, P2, P3, B). For this, we choose
BLIP-2 [40] as our base VLM due to its simplicity in archi-
tecture and flexibility in fine-tuning, but the proposed ap-
proach can be applied agnostically to other VLMs.

As shown in Fig. 3, DriveLM-Agent can be decomposed
into several stages: (1) P1−3, i.e., perception, prediction,
planning, serve as the foundational layers to understand the
scene and reason about its structure. (2) The behavior stage
aggregates crucial information from the P1−3 into a de-
scription of the desired driving action in language space. (3)
Finally, the motion stage translates the behavior into an exe-
cutable driving trajectory. To implement the logical depen-
dency between each linked QA, we propose to use context
between connected nodes in the GVQA graph. We expand
on this idea in the following.

3.1. Prompting with Context

Directly translating images to motion as in [12, 54] is ex-
tremely challenging. Motivated by the tendency of humans
to perform a multi-step reasoning process, we propose to
use a similar strategy for VLM-based driving. By doing so,
we facilitate the retrieval of knowledge stored in LLMs and
improve explainability.

4
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Figure 3. DriveLM-Agent Architecture. Given the scene im-
age, DriveLM-Agent performs prompting with context to model
the logical dependency among the five QA stages. Context is built
using preceding QAs, and can have one or more sources.

More precisely, the model is designed to use answers
from the previous steps in the reasoning process as the
context for the following questions. For each edge e =
(vp, vc) ∈ E, we append the QA from the parent node vp
to the question of the current node vc with a prefix “Con-
text: ”. The context can also contain QAs from multiple
preceding nodes in which case we concatenate all QAs to
one context sequence. It is worth noting that the context
is only one possible implementation to formulate logical
dependency in GVQA, which we select due to its simplic-
ity. With this scheme, we pass forward relevant information
based on the logical dependencies established by the graph.

Note that the size and structure of the graph during in-
ference is a design choice of the algorithm, which can be
adapted based on the task or available compute budget. We
use this property to train on all available QAs, but perform
inference on specific subgraphs, where the questions are
sampled using heuristics. For more details, please refer to
the supplementary material.

3.2. Context Aggregation through Behavior

Driving encompasses a wide array of potential situations
that require an appropriate response. However, despite the
diversity of these circumstances, it is interesting to note that
almost all events involve decisions that can be discretized
into a set of behaviors. For example, applying the brakes
appropriately may address various situations such as a red
light signal, a stop sign, or the presence of an object ahead
of the vehicle. The focus of our behavior stage is to gen-
erate such a behavior: a statement in natural language that
articulates the vehicle’s intended movement. In our method-
ology, the behavior is a textual description of the observed
future vehicle motion, and it can also be represented as
the category (Bsp, Bst) which is divided into components
for steering and speed (as described in Section 2.1). This
description effectively serves as a reflective step wherein
the model extracts and summarizes all crucial information

from the graph. To this end, we propose to use all possible
sources of context for predicting behavior, i.e., all the QAs
in P1−3. We empirically observe that having a reflective be-
havior step is crucial for driving with VLMs, and our design
choice of using all possible context sources outperforms the
naïve approach of only using P3.

3.3. Trajectory Tokenization for Motion

Since it is non-trivial to output fine-grained numerical re-
sults using general VLMs, RT-2 [85] handles robotic ac-
tions based on a specialized trajectory tokenization module.
We use this approach to enable DriveLM-Agent to take as
input the image and behavior description and output trajec-
tories. Specifically, we divide the coordinates of waypoints
into 256 bins empirically based on the statistics of the train
set trajectories. We re-define tokens in the BLIP-2 language
tokenizer, establishing tokens for each bin, and fine-tune
the VLM on this redefined vocabulary. For simplicity, we
use the same VLM architecture (BLIP-2) to perform this
task, but with independent LoRA weights and trained on a
dataset consisting of only the QAs for this motion stage.
Thus, it is possible to perform this functionality using a
lightweight LLM [56] or driving-specific architecture that
accepts a command as an input [25, 80].

4. Experiments
In this section, we present our experimental results that
aim to address the following research questions: (1) How
can VLMs be effectively repurposed for end-to-end au-
tonomous driving? (2) Can VLMs for driving generalize
when evaluated (a) with unseen sensor setups; and (b) on
objects unseen during training? (3) How well do VLMs
perform perception, prediction, and planning via GVQA?

Setup. We now briefly overview the key implementa-
tion details for the two settings used in our experiments
(additional details are provided in the supplementary ma-
terial). All fine-tuning is implemented with LoRA [24].
On DriveLM-nuScenes, we finetune BLIP-2 on the train
split for 10 epochs. We use a batch size of 2 for each GPU,
and the entire training process spans approximately 7 hours
with 8 V100 GPUs. We train BLIP-2 on a 1/20 tempo-
rally sub-sampled train split of DriveLM-CARLA for 6
epochs. This takes 6 hours on 4 A100 GPUs.

4.1. VLMs for End-to-End Driving

In our first experiment, we aim to assess the ability of VLMs
to perform open-loop planning on DriveLM-nuScenes. In
particular, we investigate the impact of the context provided
to the behavior and motion stages. Given sensor data (and
in the case of VLM methods, a text input), the model is
required to predict the ego-vehicle future trajectory in the
form of waypoints.
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Method Behavior Motion Behavior (B) Motion (M )
Context Context Acc. ↑ Speed ↑ Steer ↑ ADE ↓ Col. ↓

Command Mean - - - - - 4.57 5.72
UniAD-Single - - - - - 1.80 2.62
BLIP-RT-2 - - - - - 2.63 2.77

None B 61.45 72.20 84.73 1.39 1.67
DriveLM-Agent Chain B 50.43 60.32 75.34 2.07 2.08

Graph B 57.49 69.89 80.63 1.74 1.89

UniAD [26] - - - - - 0.80 0.17

Table 2. Open-loop Planning on DriveLM-nuScenes. Using Be-
havior (B) as context for Motion (M ) enables end-to-end driving
with VLMs on par with UniAD-Single, a state-of-the-art driving-
specific architecture.

Baselines. As a reference for the difficulty of the task,
we provide a simple Command Mean baseline. Each
frame in nuScenes is associated with one of 3 commands,
‘turn left’, ‘turn right’, or ‘go straight’. We output the
mean of all trajectories in the training set whose com-
mand matches the current test frame command. Further,
we compare our approach to the current state-of-the-art on
nuScenes, UniAD [26]. Besides the author-released check-
point, which requires video inputs, we train a single-frame
version (‘UniAD-Single’) for a fair comparison to our
single-frame VLMs. Finally, BLIP-RT-2 denotes BLIP-
2 [40] fine-tuned on DriveLM-Data with the trajectory tok-
enization scheme described in Section 3.3 for only the mo-
tion task. This acts as an indicator for the performance when
using an identical network architecture as DriveLM-Agent,
but no context inputs or VQA training data.

DriveLM-Agent. We consider 3 variants of DriveLM-
Agent incorporating our proposed changes in steps: (1) a
2-stage version that predicts behavior and then motion (as
described in Section 2.1), but without any P1−3 context
for behavior prediction (‘None’); (2) a ‘Chain’ version that
builds the P1−3 graph, but only passes the final node (P3)
to the behavior stage; (3) the full model (‘Graph’) that uses
all QAs from P1−3 as context for B.

Results. We show the results for the methods listed above
in Table 2. Among the baselines, BLIP-RT-2 is unable to
match UniAD-Single (though both methods perform well
relative to Command Mean). This shows that the single-
stage approach without any reasoning is unable to compete
with the prior state-of-the-art on nuScenes. However, the
proposed DriveLM-Agent, which predicts behavior as an
intermediate step for motion, provides a significant boost
in performance, surpassing UniAD-Single. This indicates
that with the appropriate prompting, VLMs can be surpris-
ingly competitive for end-to-end driving. Interestingly, in
the experimental setting of Table 2 which does not involve
generalization, the Chain and Graph versions of DriveLM-
Agent do not provide any further advantage over no con-
text. Further, single-frame VLMs fall short in comparison
to the privileged video-based UniAD model, indicating that
VLMs with video inputs may be necessary for this task.

Method Behavior Motion Behavior (B) Motion (M )
Context Context Acc. ↑ Speed ↑ Steer ↑ ADE ↓ FDE ↓

Command Mean - - - - - 7.98 11.41
UniAD-Single - - - - - 4.16 9.31
BLIP-RT-2 - - - - - 2.78 6.47

None B 35.70 43.90 65.20 2.76 6.59
DriveLM-Agent Chain B 34.62 41.28 64.55 2.85 6.89

Graph B 39.73 54.29 70.35 2.63 6.17

Table 3. Zero-shot Generalization across Sensor Configura-
tions. Results on 1k randomly sampled frames from the Waymo
val set after training on DriveLM-nuScenes. DriveLM-Agent
outperforms UniAD-Single and benefits from graph context.

4.2. Generalization Across Sensor Configurations

As a more challenging setting for evaluating the models
from Section 4.1, we now apply them without any fur-
ther training to a new domain: the Waymo dataset [63].
Waymo’s sensor setup does not include a rear camera, so
we drop this input from UniAD-Single. The VLM methods
only use the front view and do not require any adaptation.

Results. As shown in Table 3, UniAD-Single does not cope
well with the new sensor configuration, and drops below
BLIP-RT-2 in performance. The multi-stage approach of
DriveLM-Agent provides further improvements. In partic-
ular, the accuracy of speed predictions rises from 43.90 with
no context to 54.29 with the full graph. On the other hand,
the chain approach does not provide sufficient useful infor-
mation, with a speed accuracy of only 41.28.

We present qualitative results for DriveLM-Agent on
nuScenes and Waymo in Fig. 4. The model generally pro-
vides intuitive answers, with a few exceptions (e.g., plan-
ning on DriveLM-nuScenes, perception on Waymo). This
shows the utility of GVQA towards interactive driving sys-
tems. Further, on Waymo, we see meaningful prediction
and planning answers despite the imperfect perception. For
more visualizations, please see the supplementary material.

4.3. Generalization to Unseen Objects

Next, we evaluate zero-shot generalization to novel objects.
DriveLM-CARLA is collected without any pedestrians in
the training or validation splits. We now generate a new
test set called DriveLM-CARLA-ped, which only consists
of frames where a pedestrian is present in the scene. The
correct behavior is to stop for the pedestrian.

Baselines. For this experiment, we compare DriveLM-
Agent to TransFuser++ [30], the state-of-the-art for
CARLA. It uses a larger input image, an additional LiDAR
sensor, and several driving-specific annotations (depth, se-
mantics, 3D bounding boxes, HD map) in comparison to
DriveLM-Agent. However, because of these task-specific
inputs and outputs, TransFuser++ can only be trained on
the base DriveLM-CARLA dataset and cannot incorporate
general computer vision data during training, which makes
generalization more challenging.
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Figure 4. Qualitative Results of DriveLM-Agent. (Left) DriveLM-nuScenes val frame, (Right) Waymo val frame. We show the
questions (Q), context (C), and predicted answers (A). DriveLM-Agent’s outputs are easy to interpret for human users.

Method DriveLM-CARLA (B) DriveLM-CARLA-ped (B)

Acc. ↑ Spd. ↑ Str. ↑ Acc. ↑ Spd. ↑ Str. ↑
TransFuser++ [30] 70.19 73.29 90.68 8.72 8.72 100.00

DriveLM-Agent 59.63 61.50 78.26 4.59 4.59 100.00
+ Pedestrian QA 52.17 55.28 77.64 27.04 27.04 100.00

DriveLM-Agent (GT) 60.25 65.22 80.12 20.92 20.92 100.00
+ Pedestrian QA 60.25 65.22 80.12 92.35 92.35 100.00

Table 4. Generalization in DriveLM-CARLA. All methods un-
derperform on DriveLM-CARLA-ped with the novel pedestrian
object, but DriveLM-Agent can be significantly improved by in-
cluding a pedestrian-specific question in its GVQA graph.

DriveLM-Agent. Taking advantage of the more general ar-
chitecture of a VLM, we include samples from COCO [44]
and GQA [28] along with DriveLM-CARLA during train-
ing for DriveLM-Agent. We compare several versions: (1)
we investigate the addition of a new P1 question during in-
ference, ‘Is there a person crossing the road?’ (‘+ Pedes-
trian QA’). (2) As an upper bound, we directly input the
ground truth P1−3 graph to the model during inference, in-
stead of the model’s predictions. For more details, please
refer to the supplementary material.
Results. We present our findings in Table 4. We observe
that TransFuser++ struggles on DriveLM-CARLA-ped rel-
ative to DriveLM-CARLA, with a drop in accuracy from
70.19 to just 8.72. DriveLM-Agent experiences a simi-
lar drop from 59.63 to 4.59. However, adding the pedes-
trian QA significantly boosts performance on the general-
ization setting to 27.04, albeit with slightly reduced accu-
racy on regular scenes. This is mainly attributed to the
fact that the VLM is not able to detect all pedestrians cor-
rectly. This indicates that the large performance gains of
recently published VLMs [21, 53] can support even better

generalization ability in the domain of driving. Addition-
ally, when the pedestrian QA is provided in the privileged
setting that assumes access to perfect context for each ques-
tion in the graph, DriveLM-Agent achieves a near-perfect
score (20.92 → 92.35) on the frames with pedestrians Note
that DriveLM-CARLA-ped only contains pedestrians cross-
ing a straight road, so all models obtain a 100% accuracy on
the steering class (which is always straight).

4.4. Performance for P1−3 via GVQA

In our final experiment, we establish baseline results for
the P1−3 stages of GVQA, studying the impact of context.
We use two VLMs, the off-the-shelf BLIP-2 [40] model
(which is not fine-tuned on DriveLM), as well as the pro-
posed DriveLM-Agent.

Baselines. We consider the lower bound of no context
(‘None’), which corresponds to training and evaluation with
the same setting as standard VQA (image and question in,
answer out). As an upper bound for each architecture, we
perform GVQA but input the ground truth (‘GT’) context to
the model at test time instead of its own prior predictions.

Results. Our results are summarized in Table 5. Firstly, we
observe that DriveLM-nuScenes is significantly more chal-
lenging for both models, as indicated by the lower scores
on this dataset relative to DriveLM-CARLA in all context
settings. This is likely due to the higher diversity in human
answers obtained for DriveLM-nuScenes, as opposed to the
rule-based generation in CARLA. On both datasets, we ob-
serve that DriveLM-Agent, which is fine-tuned on Driv-
eLM, significantly outperforms BLIP-2 which is applied in
a zero-shot manner. We also observe the SPICE and GPT
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Context
DriveLM-nuScenes (P1−3) DriveLM-CARLA (P1−3)

BLIP-2 [40] DriveLM-Agent BLIP-2 [40] DriveLM-Agent
SPICE ↑ GPT ↑ SPICE ↑ GPT ↑ SPICE ↑ GPT ↑ SPICE ↑ GPT ↑

None 4.34 42.97 42.56 71.39 13.89 66.77 87.52 86.84
Graph 7.71 45.21 49.54 72.51 12.79 59.98 86.86 84.51

GT 8.19 41.10 50.29 72.94 39.46 61.40 87.70 87.15

Table 5. Baseline P1−3 Results. DriveLM-Agent outperforms
BLIP-2, but is unable to benefit from the availability of context.

score metrics to be misaligned, in particular for BLIP-2.
Interestingly, on DriveLM-CARLA, BLIP-2 with GT con-
text gains over 25 points in terms of SPICE accompanied
by a small drop in GPT score compared to the no context
version. This shows that current VLMs are able to mimic
the sentence structure and style of the provided context, but
face challenges in performing logical reasoning. Overall,
we conclude that DriveLM-Agent can obtain a reasonable
baseline performance on P1−3 question answering without
context. However, specialized architectures or prompting
schemes beyond naive concatenation may be necessary to
make better use of the logical dependencies in GVQA.

5. Related Work
Generalization in Autonomous Driving. The inadequacy
of generalization to the “long tail” of corner cases poses
significant safety concerns to AD systems [8, 65, 66]. To
tackle this issue, prior research primarily makes efforts in
data-driven methods [1, 6, 23, 64, 71]. For example, Traf-
ficSim [64] collects more data for safety-critical cases by
simulation. An emerging direction involves leveraging se-
mantic information to supervise the detection of unseen or
anomalous objects [19, 72]. These efforts alleviate the prob-
lem of insufficient generalization. Even so, the zero-shot
performance of AD systems is currently not satisfactory. In
this paper, we bring a new approach towards better general-
ization: learning logical reasoning using Graph VQA.
Embodied Planning with LLMs. Recent work endeav-
ors to leverage the formidable reasoning and generaliza-
tion capacity of LLMs [20, 36, 68] for embodied AI sys-
tems [18, 27, 29, 33, 42, 57, 85]. PaLM-E [18] trains
an LLM for various embodied tasks including sequential
robotic manipulation planning. CaP [42] provides a robot-
centric formulation of language model generated programs
executed on real systems. RT-2 [85] represents robot actions
as language tokens, training vision-language models to out-
put robot policies. These methods showcase the capabilities
of LLMs in embodied planning tasks, inspiring us to apply
them to address the current shortcomings in generalization
in AD, which is far less explored.
Language-grounded Driving. Several concurrent meth-
ods attempt to incorporate multi-modal inputs into LLMs
for AD tasks [7, 32, 48, 60, 72, 76, 81]. Specifically, GPT-
Driver [48] and LLM-Driver [7] encode the perceived scene
state into prompts, relying on LLMs to formulate reason-

able plans. DriveGPT4 [81] projects raw sensor data into
tokens and utilizes LLMs for end-to-end prediction of con-
trol signals and explanations. Despite these preliminary at-
tempts, there is untapped potential in addressing generaliza-
tion in AD through LLMs. Our work combines VLMs with
training over graph-structured QAs from DriveLM. This en-
ables us to show benefits on zero-shot end-to-end planning,
which was not demonstrated by these concurrent studies.

6. Discussion
Even though DriveLM exhibits promising generalization,
there are concerning limitations of this work.
• Driving-specific Inputs. DriveLM-Agent directly ap-

plies the VLM’s vision module, taking a low-resolution
front-view frame as its input. Currently, driving-specific
sensors such as LiDAR cannot be processed. This re-
sults in our model lacking temporal information and 360-
degree scene understanding. Extending DriveLM-Agent
to observe images from multiple views is straightforward
as the graph formulation allows different input frames for
different nodes. We leave it for future work to explore
options for multi-view and multi-frame inputs.

• Closed-loop Planning. Our approach is currently eval-
uated under an open-loop scheme. In this setting, in-
corporating the ego vehicle’s status as input can signifi-
cantly enhance the metrics, but its effectiveness may not
translate well to the real world, and hence we only con-
sider methods that do not do so. Extending our work to
a closed-loop setting with an affordable budget in train-
ing time and computational cost is a promising direc-
tion to explore. With the usage of CARLA we provide
a promising foundation for more research in the direction
of closed-loop planning with VLMs.

• Efficiency Constraints. Inheriting the drawbacks of
LLMs, our model suffers from long inference times, espe-
cially as we require multiple rounds of predictions based
on the graph structure (roughly 4× slower than UniAD).
This may impact practical implementation. Exploring
how to conduct model quantization, distillation and prun-
ing is a worthy direction for future research.

Conclusion. We show how VLMs can be leveraged as end-
to-end autonomous driving agents with improved general-
ization over task-specific driving stacks. For this we pro-
pose the task of Graph VQA together with new datasets and
metrics. Equipped with these tools, we build a baseline ap-
proach that has a simple architecture and obtains promis-
ing results. We believe that this approach can accelerate
progress in the field of autonomous driving by enabling it
to directly benefit from better VLMs.

Broader Impact. Our goal is to make progress towards au-
tonomous driving, which will have profound impact if suc-
cessful. We recognize that by bringing VLMs into this area,
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we accept their ethical implications, such as hallucinations
and high resource use. Yet, by improving the interactivity
between humans and autonomous driving systems, we can
build confidence in the technology. This could hasten its ac-
ceptance and lead to safer transportation in the long term.
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Overview

In the appendices below, we first delve deeper into various discussions, along with additional details around the annotation
process of DriveLM-nuScenes & -CARLA, GVQA metrics, context setting & trajectory tokenization in DriveLM-Agent,
and more ablation results of DriveLM-Agent on DriveLM-nuScenes and Waymo. Finally, we provide additional results and
visualizations that further complement the findings from the main text.

For readers who want to focus on specific topics, we provide a summary below:

Appendix A – Motivating Questions

We index a list of “motivating” questions that may arise from reading the main text and that we expand on further
here (e.g., “why adapt general VLMs to driving”). These questions are open to be explored and thus our answers
here are intuitive and empirical.

Appendix B – DriveLM-nuScenes

We provide the DriveLM-nuScenes dataset composition, introduce the detailed annotation pipeline and conduct
statistics of QA categories.

Appendix C – DriveLM-CARLA

We provide a detailed description of the composition of the dataset, how the graph looks like and explain the data
generation and annotation process.

Appendix D – DriveLM-Metrics

We explain the details of the metrics for each task in the GVQA, illustrate their difference, and provide the reasons
of proposing GPT-score as the main metric used in P1−3 VQA tasks.

Appendix E – DriveLM-Agent

We introduce the detailed design of the prompting with context and the trajectory tokenization, including the
difference of context in training and evaluation, the pattern for the trajectory as sentence, and the hyperparameters
in the tokenizer.

Appendix F – Experiments

We provide more experiments on DriveLM-nuScenes and Waymo, including the effects of more context design on
the zero-shot ability, the performance with more conventional VQA metrics and the model efficiency comparison.

Appendix G – Qualitative Results

We show qualitative examples of the context, questions, and answers on nuScenes, Waymo, and CARLA. Addi-
tionally, we contrast predicted and ground truth answers together with their SPICE and GPT Score on nuScenes to
provide some intuition for those metrics.

Appendix H – Other Related Work

We provide more related works from two new perspectives. One is reasoning over graph structure which is similar
to our idea of graph-structure reasoning, the other is more vision-language benchmarks for autonomous driving.
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A. Motivating Questions

Q1. In what situations could we expect planning with VLMs to outperform conventional end-to-end autonomous driving?

One of the key challenges of autonomous driving is to generalize to the long-tail of scenarios, that are rarely encountered
but have critical importance. Considering the large-scale pre-training of VLMs, their acquired knowledge of the world, and
the reasoning ability of the LLM, it is anticipated that planning with VLMs work better, particularly in situations that are
novel or unseen in the context of driving scenarios but encountered during pre-training in unrelated contexts.

Q2. Why adapt general VLMs to driving rather than adding language inputs to driving-specific models?

General VLMs benefit from billion-scale pre-training data for vision-language tasks extracted from the internet, which
can be adapted to the driving domain through fine-tuning on small autonomous driving datasets like DriveLM. Conversely,
driving-specific models are only pre-trained on small autonomous driving datasets, and adding language inputs to these with
data from outside the self-driving domain is non-trivial. Combining the advantages of VLMs and driving-specific models is
however an interesting direction to explore.

Q3. Can open-loop evaluation of planning provide meaningful results?

When performing open-loop evaluation, providing the ego history as an input to the planning module prevents fair com-
parisons, as this signal alone is sufficient for achieving low errors on existing benchmarks. DriveLM alleviates this issue
by evaluating key frames, where the intention of the ego vehicle changes, and the ego history is not strongly indicative of
the future behavior or motion. Additionally, we consider baselines in our analysis that do not input the ego history to the
planning module. Finally, we introduce DriveLM-CARLA as a means to show closed-loop planning results in the future.

Q4. Why are there currently no closed-loop planning results on CARLA?

Running 4B parameter models at 20 FPS as required by CARLA needs more engineering effort. This could be solved by
using distillation, quantization, and caching techniques in LLM inference. Another approach would be to execute only the
final motion stage of DriveLM-Agent at 20 FPS, while the other GVQA stages are executed at a lower frame rate.

Q5. Is DriveLM-Agent efficient enough to be applicable to real-world autonomous driving?

We comment on the run-time of DriveLM-Agent in Table 6. Without any optimization, the approach is around 1 order
of magnitude slower than UniAD. However, with the optimizations proposed for closed-loop results on CARLA (see Q4),
practical applications of VLMs in driving should be possible.

Q6. Why is VQA more suited than alternative techniques to train internet-scale models (such as generative modeling) for the
downstream application of autonomous driving?

Both perception and planning in driving require reasoning and involve zero-shot generalization. VLMs potentially have
the reasoning ability inherited from LLMs, making VQA a promising direction for bringing the benefits of web-scale training
to autonomous driving.

Q7. Do today’s VLMs understand and reason about the visual world as well as LLMs understand text-based worlds?

This is not known but deserves to be explored because VLMs approach the problem of generalization in a data-driven
way, which has been proved successful repeatedly.

Q8. Why does the proposed graph reasoning scheme not provide strong improvements in VQA?

It is possible that the simple prompting scheme, relatively small base VLMs, or insufficiently strong logical dependencies
in the dataset (or a combination of these factors) contribute to the lack of clear improvements. DriveLM-CARLA provides a
platform to carefully study these factors and inform the annotation of future datasets for GVQA.
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Method #Params #Trainable FLOPs FPS

UniAD-Single 131.9M 58.8M 1.7T 1.8
DriveLM-Agent 3.955B 12.9M 24.2T 0.16

Table 6. Computational complexity and runtime. Compared to UniAD-Single, DriveLM-Agent has fewer trainable parameters. For
now, the efficiency is not good, and requires engineering efforts.

After the ego vehicle turned right at the intersection, it proceeded along the main 
road, eventually coming to a halt and patiently waiting alongside the black vehicle.

Scene-level Description

Perception:
Q: What are the important objects in the current scene?
A: There is a moving car to the front left of the ego car/…

The ids of these objects are <c1,CAM_FRONT_LEFT,873.4,665.1>/…
One of the key frames.

Frame-level QA

Prediction:
Q: Would <c3,CAM_FRONT,838.3,609.2> be in the moving direction of the ego 
vehicle?
A: Yes.                    
Q: Based on the observations of <c2,CAM_BACK,854.2,571.7>, what are 
possible actions to be taken by <c3,CAM_FRONT,838.3,609.2>? What is the 
reason?                   
A: The action is to do nothing, the reason is that there is no safety issue.

Planning:
Q: What are safe actions to take for the ego vehicle?
A: Brake gently to a stop.

Figure 5. Overall Composition of DriveLM-nuScenes. The dataset comprises scene-level descriptions and frame-level QA, which can
be divided into three parts: Perception, Prediction, and Planning. Objects are encoded using c tags, which contain identifiers, camera
affiliations, and center coordinates of its 2D bounding box in the corresponding camera frame.

B. DriveLM-nuScenes
In this section, we introduce the details of DriveLM-nuScenes, including the dataset composition, collection methodology,
and statistics.

B.1. Dataset Composition

DriveLM-nuScenes comprises a training set of 4072 frames and a validation set of 799 frames, consisting of scene-level
descriptions and frame-level QA accompanied by 2D bounding boxes within multi-view images from the nuScenes dataset.
The scene-level description delineates the behavior of the ego vehicle throughout the entire video clip. The frame-level QA
encompasses three distinct categories: perception, prediction, and planning.

• Perception involves queries related to the thorough examination of the entire frame. Apart from several questions in
this question set that are manually annotated, we design prompts to generate questions about the observational facets
of objects within the scene, leveraging ground truth from nuScenes [5] and OpenLane-V2 [70].

• Prediction encompasses a series of inquiries regarding the projection of the forthcoming state of key objects and the
ego vehicle in the current frame, and the underlying reasoning process behind the prediction. Because the predictions
are intricate and challenging, we manually annotate the answers.

• Planning contains questions related to planning subsequent actions of the ego vehicle in the current frame. As “Plan-
ning” is the same challenging as “prediction”, we design the prompt for the reasoning process and manually annotate
the answers to the questions.

For the key objects referred to in the QA, we encode them as c tags in the format <c, CAM , x, y>, where c is the
identifier, CAM indicates the camera where the object’s center point is situated, and x, y represent the horizontal and
vertical coordinates of the 2D bounding box in the respective camera’s coordinate system. We also provide a dictionary in
each key frame, recording more basic information about the key objects such as the size of the bounding box, the category,
the moving state, and the visual description. The overview of data organization forms is shown in Fig. 5.

B.2. Collection Methodology

During the annotation process, we employ individuals with driving experience for the labeling task. We provide annotators
with the stitched results from the six cameras of nuScenes as source data. As shown in Fig. 6 (left), we divide the annotation
process into three steps: selecting key frames from video clips, choosing key objects within these key frames, and subse-
quently annotating the frame-level QAs in the key frames. Following this, we conduct multiple rounds of quality checks

15



Each Video

Stitch 
cameras
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Factual questions
Moving states/Occurrence…

Context

Key 
Objects
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Manually Annotated Data Rule-based Generated Data

Annotated Data

DriveLM-nuScenes

Postprocess

Sample 10%

Key frames

Figure 6. (Left) Pipeline of the three-steps annotation process. For each video, we ask the annotators to annotate the key frames, key
objects, and QA attributes step by step. (Right) The quality check and post-processing progress. We divided the annotated data into
batches, where each batch contains 8 video clips and their related annotations. We conduct rigorous quality checks, and after the post-
processing, we finally get two versions of our DriveLM-nuScenes dataset.

to ensure the data reliability and perform post-processing procedures on the qualified data as shown in Fig. 6 (right). The
specific details of this pipeline will be introduced below.
Key Frame Selection. In this process, we ask annotators to review the entire video clip to pinpoint key frames rich in scene
information and potentially indicative of future state changes. Simultaneously, annotators are instructed to label the ego
vehicle’s behavior throughout the video clip. This segment serves as the foundation for our scene-level description.
Key Object Selection. In this annotation step, we instruct annotators to identify objects in key frames that are relevant to
the ego vehicle’s driving, denoted as key objects. To ensure accuracy, we provide pre-annotated bounding boxes based on
ground truth categories from nuScenes [5]. Annotators also have the flexibility to designate objects not present in the ground
truth as key objects if they are deemed significant.
QA Labeling. In the QA labeling process, we have two sets of questions, factual questions and open-ended questions. For the
factual questions, we generate the answers with a rule-based method. For the open-ended questions, we instruct annotators to
manually annotate the meticulously designed questions. Options are provided for most manually annotated questions, and we
include an "Other - Fill in the Blank" option for answer choices in such cases to ensure flexibility. We have also incorporated
free-form questions, allowing annotators to generate their own inquiries about the current frame.
Quality Check. We prioritize the quality of our data. In addition to establishing clear criteria and implementing autonomic
checking strategies at each annotation step, we conduct rigorous manual quality checks. We organize the final data into
batches, with each batch comprising 8 video clips, along with their scene-level descriptions, key frames with key objects se-
lected from the 8 video clips, and corresponding QA pairs for each key frame. We provide explicit standards to quality check
inspectors, instructing them to assess data eligibility based on these criteria. For manually annotated data, if the accuracy of
the manual annotations falls below expectations for a particular batch, we compile feedback on the issues encountered and
request annotators to re-annotate the entire batch. For data generated from ground truth, we instruct quality inspectors to
manually adjust the inconsistent or unreasonable QA pairs.
Post Processing. Since our annotators are Chinese speakers, we need to translate the labeled data into English after obtaining
it. Initially, we establish mappings between Chinese and English using a vocabulary. For texts that are not successfully
mapped, we utilize GPT-3.5 for translation, and then perform manual checks and corrections on the GPT outputs. We also
provide a version augmented by GPT-3.5, utilizing the prompt as shown in Table 7.

Messages = [

{ "role": "system", "content": f""" You are an English improver. """ },

{ "role": "user", "content": f""" I have a question and answer that I need you to help me modify and
embellish, please make a few simple changes to the content in written language and keep the meaning same, you only
need to answer the changes to: {QA}"""}]

Table 7. Prompt for GPT-refined version of DriveLM-nuScenes. We try 50 different prompt and select this pattern as the final one to do
the refinement.
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Figure 7. The distribution of question types according to different tasks in DriveLM-nuScenes. We categorize questions into percep-
tion, prediction, and planning tasks, each further subdivided into more specific question types.

B.3. Statistics and Facts

In this section, we conduct a distribution analysis of our DriveLM-nuScenes QA categories at both the task level and object
level. Additionally, for the task level, we provide the templates for all our QA under this classification criterion. The results
indicate the richness of our QA categories, covering various aspects of autonomous driving. Moreover, the abundance of
logical relationships is sufficient to construct a graph-structured QA.
Task level. Our DriveLM-nuScenes orchestrates a benchmark that encompasses various aspects of autonomous driving,
connecting the whole stages of the human driving logic. To delve deeper into this aspect, we present the detailed QA types
distribution at task level in Fig. 7. For a better understanding, we also provide examples of QA templates in all of the P3
stages in Table 8.

Perception
Surrounding Objects Identify
Q: Please describe the current scene.
A: There are two moving cars behind the ego car and two barriers in front of it.
Q: What are objects to the front left/back right/... of the ego car?
A: There are two barriers to the front left of the ego car.
Q: Are there traffic cones/moving cars/... to the front right/back left/... of the ego car?
A: No.
Traffic Elements Identify
Q: Is there any traffic element in the front view?
A: Yes, there are some traffic elements in the front view.
Q: Identify all the traffic elements in the front view, categorize them, determine their status, and predict the bounding
box around each one. The output should be a list formatted as (c, s, x1, y1, x2, y2), where c represents the category, s
denotes the status, and x1, y1, x2, y2 are the offsets of the top-left and bottom-right corners of the box relative to the
center point.
A: There are three traffic elements in the front view. The information of these traffic elements are [(road sign, go
straight, 907.58, 590.67, 992.54, 630.95)...].
Important Objects Identify
Q: What are the important objects in the current scene? Those objects will be considered for the future reasoning and
driving decision.
A: There is a parked truck to the back of the ego car... The ids of these objects are <c1,CAM_BACK,827.5,484.2>...
Q: What is the relative positioning of the important objects in the current scene?
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A: <c3,CAM_FRONT,689.2,527.5> is to the front of <c1,CAM_BACK,827.5,484.2>...
Q: Which lanes are each important object on in the scene?
A: <c2,CAM_FRONT,820.8,473.3> is on the ego lane...
Visual Description
Q: What is the visual description of <c2,CAM_FRONT_LEFT,415.8,580.8>/...?
A: Pedestrian riding a bicycle.
Motion State
Q: What is the status of the cars/pedestrians/... that are to the front/front right/... of the ego car?
A: Many cars are parked.
Q: What is the observed status of object <c1,CAM_FRONT,920.0,509.2>/...?
A: Moving.
Q: What is the moving status of object <c1,CAM_FRONT,920.0,509.2>/...?
A: Going ahead.
Prediction
Visual Occlusion
Q: Which object is most likely to be occluded by <c1,CAM_FRONT,707.5,472.5>/...? Would this object affect the
ego vehicle? Based on this object, what action of the ego vehicle is dangerous?
A: The object in front of <c1,CAM_FRONT,840.8,507.5>, yes, accelerating forward.
Logical Sequence
Q: What object should the ego vehicle notice first when the ego vehicle is getting to the next possible location? What
is the state of the object that is first noticed by the ego vehicle and what action should the ego vehicle take? What
object should the ego vehicle notice second when the ego vehicle is getting to the next possible location? What is the
state of the object perceived by the ego vehicle as second and what action should the ego vehicle take? What object
should the ego vehicle notice third? What is the state of the object perceived by the ego vehicle as third and what
action should the ego vehicle take?
A: Firstly notice that <c2,CAM_FRONT,514.7,462.2>, the state of it is traffic sign, so the ego vehicle should slow
down and go ahead. Secondly notice that <c3,CAM_FRONT,950.3,613.1>, the state of it is traffic sign, so the ego
vehicle should slow down and go ahead. Thirdly notice that <c1,CAM_FRONT,707.5,472.5>, the state of it is going
ahead, so the ego vehicle should slow down and go ahead.
Motion Prediction
Q: Would <c1,CAM_FRONT,920.0,509.2>/... be in the moving direction of the ego vehicle?
A: Yes.
Q: What is the future state of <c1,CAM_FRONT,920.0,509.2>/...?
A: Keep going straight.
Q: Will <c2,CAM_FRONT,1223.3,598.3>/... be in the moving direction of <c1,CAM_BACK,514.2,503.3>/...?
A: No.
Object Interaction
Q: Will <c2,CAM_FRONT,1223.3,598.3>/... change its motion state based on <c1,CAM_BACK,514.2,503.3>/...?
A: No.
Q: Based on the observations of <c1,CAM_BACK,514.2,503.3>/..., what are possible actions to be taken by
<c2,CAM_FRONT,1223.3,598.3>/...? What is the reason?
A: The action is to keep going at the same speed, the reason is there is no safety issue.
Q: Based on the observation of <c4,CAM_FRONT,1071.2,346.2>/..., what actions may
<c1,CAM_FRONT,1126.7,515.0>/... take?
A: The action is to keep going at the same speed, the reason is there is no safety issue.
Possible Attention
Q: In this scenario, what object is most likely to consider <c3,CAM_FRONT,400.1,717.2>/...?
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A: The ego vehicle.
Q: Would <c1,CAM_BACK,514.2,503.3>/... take <c3,CAM_FRONT,400.1,717.2>/... into account?
A: No.
Q: What object would consider <c1,CAM_FRONT,985.8,516.7>/... to be most relevant to its decision?
A: The ego vehicle.
Q: Except for the ego vehicle, what object would consider <c1,CAM_FRONT,985.8,516.7>/... to be most relevant to
its decision?
A: <c2,CAM_FRONT,1217.5,511.7>.
Signal Meaning
Q: What does <c2,CAM_BACK_LEFT,400.8,654.2>/... mean?
A: No entry.
Q: What kind of traffic sign is <c2,CAM_BACK_LEFT,400.8,654.2>/...?
A: Traffic cone.
Planning
Safe/Unsafe Action
Q: In this scenario, what are safe actions to take for the ego vehicle?
A: Decelerate gradually without braking, keep going at the same speed.
Q: In this scenario, what are dangerous actions to take for the ego vehicle?
A: Accelerate and go ahead, brake suddenly, drive backward, turn right.
Importance Ranking
Q: What is the priority of the objects that the ego vehicle should consider? (in descending order)
A: <c2,CAM_FRONT,514.7,462.2>, <c3,CAM_FRONT,950.3,613.1>, <c1,CAM_FRONT,707.5,472.5>.
Goal Action
Q: What is the target action of the ego vehicle?
A: Go straight.
Planning and Reasoning
Q: What actions could the ego vehicle take based on <c1,CAM_FRONT,920.0,509.2>/...? Why take this action and
what’s the probability?
A: The action is to decelerate gradually without braking, the reason is to keep a safe distance, high.
Q: Based on <c3,CAM_FRONT,1591.1,441.8>/... in this scene, what is the most possible action of the ego vehicle?
A: Decelerate gradually without braking.
Possible Collision
Q: What is the probability of colliding with <c1,CAM_FRONT,920.0,509.2>/... after the ego vehicle goes straight
and keeps the same speed/accelerates and goes straight/...?
A: Low.
Q: What actions taken by the ego vehicle can lead to a collision with <c1,CAM_FRONT,920.0,509.2>/...?
A: Accelerate and go straight.
Ego Attention
Q: What is the traffic signal that the ego vehicle should pay attention to?
A: None.
Q: Is <c1,CAM_FRONT,920.0,509.2>/... an object that the ego vehicle should consider in the current scene?
A: Yes.
Q: Is it necessary for the ego vehicle to take <c3,CAM_FRONT,400.1,717.2>/... into account?
A: Yes.
Free-form QA/Comment
Q: What impact does this situation have on driving vehicles?
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A: The road scene is complex, please slow down.
Q: What’s your comment on this scene?
A: Pedestrians at the intersection, please be careful and give way.
...

Table 8. Question templates of DriveLM-nuScenes at task level. The categories in the table correspond to those in Fig. 7.

Object level. We also conduct some statistics at the object level since QAs in our DriveLM-nuScenes revolve around key
objects. Fig. 8 (left) shows the distribution of our key object types. Given the substantial differences in questions associated
with traffic elements compared to other categories, we separately conduct statistics for QA types related to traffic elements
and the remaining categories. The results are depicted in Fig. 8 (right).

C. DriveLM-CARLA
In this section, we introduce the details of DriveLM-CARLA, including the dataset composition and collection methodology.

C.1. Dataset Composition

DriveLM-CARLA consists of automatically generated frame-level question-answer pairs that are structured with an inter-
connected graph. The graph structure can be seen in Fig. 9. In the current version, the dataset consists of questions about
the road layout, stop signs, traffic lights, and vehicles. In future versions, the dataset can be extended to more categories like
static objects, weather, other signs, and others.

Utilizing the driving simulator CARLA for the data generation process allows for scalable annotations and data without
any manual effort involved. Additionally, the dataset supports a variety of sensor outputs from CARLA, including semantic
segmentation, depth map, LiDAR, and others, which can be employed to train different network architectures. Each question
within the graph is designed in a way to facilitate situational reasoning, which could be instrumental in answering subsequent
questions. As with DriveLM-nuScenes, each question can be categorized into perception, prediction, or planning. For each
QA-pair, besides the corresponding question and answer, we also save the object ID in case the QA-pair is about an object.
This ID is consistent over time, enabling object tracking and temporal reasoning in future studies. In addition, relationships
to parent and child questions within the graph are documented to allow efficient traversal of the graph.

C.2. Collection Methodology

In this section, we provide details about the data collection and the annotation process.
Simulator settings. We utilize the CARLA Simulator (version 0.9.14) with Leaderboard 2.0 [17] to generate our dataset.
Leaderboard 2.0 introduces two new large maps along with a suite of new scenarios, enhancing the diversity of the training
and evaluation environments. Town 12 serves as the training town, while Town 13 is reserved for evaluation. Each town
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Figure 8. (Left) The distribution of key objects in DriveLM-nuScenes. The sub-categories are extracted from the visual description.
(Right) The distribution of question types related to different key objects in DriveLM-nuScenes. Since the questions associated with
traffic elements differ significantly from other categories, we separately conduct statistics for QA types related to traffic elements and the
remaining categories.
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What should the ego 
vehicle do?

Does the ego vehicle 
need to stop? Why?

Figure 9. Detailed flow on CARLA graph. We show the full graph of DriveLM-CARLA. The graph consists of questions and answers
about the road layout, traffic lights, stop signs, and vehicles.

covers an area of 10 x 10 square meters, encompassing varied environments such as rural, residential, and urban landscapes
to replicate real-world driving conditions.

The CARLA team provides a total of 90 training routes, spanning 780.6 kilometers, and 20 evaluation routes, measuring
247.6 kilometers. Every route incorporates multiple driving scenarios. We segmented these routes into shorter segments,
approximately 200 meters in length and filter routes that start and end at the same position. During the training phase, all
predefined scenarios are omitted to test generalization ability and because the expert was designed for Leaderboard 1.0 and
cannot solve most of the new scenarios. We use the pedestrian scenarios to assess the generalizability of DriveLM-Agent.

The traffic manager within Leaderboard 2.0 initializes random background traffic around the ego vehicle comprised exclu-
sively of ’car’ entities. To enrich the dataset with greater diversity, we introduce additional vehicle classes including ’trucks’,
’vans’, ’bicycles’, and ’motorcycles’. Moreover, we implemented randomized weather configurations for each training and
evaluation route to mimic realistic driving conditions. However, night-time settings were excluded from our study due to the
inadequate illumination in certain map regions. Low-light conditions significantly impede the correctness of the automatic
labeling process since it is hard to obtain information about the visibility of certain objects in the image.

Expert. We integrate the rule-based expert from Transfuser++ [30] and slightly modify it to function within the new version
of the CARLA simulator (version 0.9.14). The expert follows the provided waypoints, typically the center lane of the road,
driving with a pre-defined target speed. In each timestep, the expert evaluates the environment for potential hazards that could
impede safe driving. Those hazards include traffic signals such as red lights and stop signs as well as dynamic obstacles like
pedestrians crossing the road, and vehicles that may pose a risk of collision. Upon identification of any such hazard, the
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expert starts braking, to ensure safety. With the transition to the newer CARLA version, the vehicle dynamics changed.
These changes necessitated fine-tuning the parameters of the PID controller, which is responsible for the vehicle’s speed and
steering control. The tuning aimed to mitigate any oscillatory behaviors that were particularly evident during braking and
when navigating sharp turns.

Data collection. We execute the expert on each of the routes and gather a comprehensive set of sensor data. The sensor data
includes:

• RGB image
• LiDAR point cloud
• semantic segmentation images
• depth maps
• Bird’s Eye View (BEV) semantic segmentation

While DriveLM-Agent leverages only RGB images, retraining TransFuser++ needs the additional data for the auxiliary tasks.
In addition, we extract privileged information from the simulator about the status of the static and dynamic objects in the

scene, as follows:
• Ego vehicle: 3D bounding box, speed, brake, id
• Other vehicles: 3D bounding box, number of lidar points inside BB, distance to ego, speed, steer, throttle, brake, id,

color, vehicle type, number of wheels, traffic light state, lane information (i.e., on which road and lane is the vehicle
driving), vehicle in junction or not, distance to next junction, next high-level command

• Pedestrians: 3D bounding box, number of lidar points inside BB, gender, age, distance to ego, speed, id, lane informa-
tion

• Traffic lights: 3D bounding box, distance to ego, state, affects ego vehicle
• Stop signs: 3D bounding box, distance to ego, affects ego vehicle
• Static cars (parked cars): 3D bounding box, lane information
• Landmarks (e.g., speed signs): 3D bounding box, distance to ego, id, text, value
• Weather: weather parameters

Language labels. Based on the information we extract from the simulator we create questions and answers with hand-crafted
sentence templates. For more linguistic diversity and to prevent overfitting to those sentence structures those sentences could
be further augmented with current state-of-the-art language models like GPT-4. However, in this work, we use a version of
the dataset that is not augmented.

D. DriveLM-Metrics

In this section, we offer a detailed introduction to DriveLM-Metrics. DriveLM-Metrics can be broadly categorized into three
parts: P1−3 VQA Metrics, Behavior Task Metrics, and Motion Task Metrics.

D.1. P1−3 VQA Metrics

We assess the performance of P1−3 using common VQA metrics, and we introduce the GPT score for a more semantically
comprehensive evaluation of our QA results. Additionally, given the graph structure of our QA, we propose the Completeness
score to provide a thorough assessment.
BLEU [52] measures the similarity between a generated text and one or more reference texts. It operates by comparing
n-grams in the generated text to those in the reference texts, with higher precision indicating a better match. However, the
BLEU score exhibits insensitivity to semantic nuances and variations in word order.
ROUGE_L [43] calculates scores with the longest common sub-sequence of the model outputs and the reference answers.
Similar to the BLEU metric, ROUGE is used to assess the level of matching between generated results and standard refer-
ences, with the key difference being that ROUGE is based on recall.
METEOR [38] takes into account precision, recall, stemming, synonymy, stemming, and word order. It establishes alignment
between model outputs and references, computes the 1-gram matching between them, and then applies penalties based on
chunk blocks, providing a more nuanced evaluation.
CIDEr [69] combines elements from BLEU and vector space models. The underlying concept involves treating each sentence
as a document, calculating its n-gram TF-IDF vector, and using cosine similarity to measure the semantic consistency between
candidate and reference sentences. CIDEr captures matches between n-grams of different lengths and differentiates the
importance of various n-grams through TF-IDF weighting.
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SPICE [2] first parses the text into a syntactic dependency tree using Probabilistic Context-Free Grammar [31], then maps
the dependency tree into a scene graph in a rule-based manner. The scene graph describes the objects, attributes, and their
relationship in the original text, and the SPICE score is computed as the F-score of the generated scene graphs from prediction
and ground truth.
GPT Score is a metric provided by ChatGPT. Traditional metrics mainly assess word-level performance and may not capture
semantic nuances, potentially yielding unexpected evaluation outcomes. Leveraging ChatGPT’s robust reasoning capabilities,
we employ it to gauge prediction quality and derive a more rational score. ChatGPT is prompted to assign a numerical score
between 0 and 100, with higher scores indicative of enhanced prediction accuracy. The detailed prompt for GPT score
evaluation is shown in Table 9.

Messages = [

{ "role": "system", "content": f""" An evaluator who rates my answer based on the correct answer. """
},

{ "role": "user", "content": f""" Rate my answer based on the correct answer out of 100, with higher
scores indicating that the answer is closer to the correct answer, and you should be accurate to single digits like 62,
78, 41, etc. This is the correct answer: {GT}. This is my answer: {Pred}. """}]

Table 9. Prompt for GPT score. This differs from the prompt used in DriveGPT4 [81], but the resulting score is similar.

Completeness provides a score that accounts for how many ground truth questions are correctly answered associated with a
frame. For each QA, if the score of the predicted answer is above a threshold, then this QA is considered “correctly answered”
and is a correct prediction, otherwise an incorrect prediction. We then calculate the accuracy, which is the ratio of the number
of correct predictions to the total number of predictions. In our setting, we utilize the SPICE score and set the threshold at
0.5.

D.2. Behavior Task Metrics

We evaluate behavior predictions by classification accuracy, along with a breakdown of the overall accuracy into its steering
and speed components.
Classification Accuracy is the metric we use to evaluate Behavior Prediction Task, comprising accuracy of behavior, be-
havior speed, and behavior steer. Specifically, the ground truth of the ego vehicle future trajectory is a set of N points with
coordinates (x, y) under the bird’s-eye-view, noted as {(x0, y0), (x1, y1), ..., (xN , yN )}. Each point denotes the offset of the
future position to the current position by a number of fixed interval times. Then, the distance for x, y at each time interval is
independently computed as:

{x, y}dist = (({x, y}1 − {x, y}0), ..., ({x, y}N − {x, y}N−1)) (2)

The mean of xdist and ydist are mapped to one of the predefined bins, where each bin corresponds to a category in either
speed or steering, noted as Bspeed and Bsteer respectively. Finally, the speed and steering categories for this trajectory form
the behavior category as (Bspeed, Bsteer). We compare them with the behaviors of our DriveLM-Agent outputs and calculate
the related accuracy.

D.3. Motion Task Metrics

For measuring the performance of the motion stage, we use standard metrics from the nuScenes and Waymo benchmarks:
average and final displacement error, (ADE, FDE), and the collision rate of the predicted trajectory.
ADE stands for Average Displacement Error, indicating the average L2 distance between the predicted trajectory and the
ground truth trajectory over all predicted horizons. It is the average of the errors at 1st, 2nd and 3rd second.
FDE stands for Final Displacement Error, which measures the Euclidean distance between the predicted endpoint and the
true endpoint at the last predicted step (the 3rd second).
Collision Rate accounts for the ratio of how many test frames the predicted trajectory collides with objects in over all test
frames. The number reported in Table 2 of the main paper is the average of the collision rate at 1st, 2nd and 3rd second.

Note that the calculation of ADE, FDE and Collision Rate follows the setting used in UniAD [26] but not ST-P3 [25].
For example, in terms of the FDE and the collision rate at 3rd second, the UniAD setting will consider the error/collision
rate at only this timestep, while the ST-P3 setting will consider the error/collision rate as an average over 0.5, 1, 1.5, 2, 2.5,
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3 seconds. For more details, please refer to the UniAD repo discussion. Additionally, please note that errors reported on the
full nuScenes validation dataset (in prior work) is not directly comparable to results reported on the DriveLM-nuScenes val
split, a challenging subset of this consisting of only keyframes with intention changes.

E. DriveLM-Agent
In this section, we introduce the details of DriveLM-Agent, including the graph prompting scheme and the trajectory tok-
enization process.

E.1. Prompting with Context

In terms of the implementation, the content of context differs during the training and inference of DriveLM-Agent, following
the teacher-forcing setting [37, 67] generally adopted in recurrent networks. During training, for each edge e∈E in the frame,
we pick the child QA. The child questions in the edges are appended with the ground truth parent QA as the context. All
QA pairs are used during training, including those without context. The objective used is next token prediction, the standard
approach for language modeling. During inference, the model is applied interactively in multiple rounds to get the required
context predictions as inputs for each child question. Specifically, the model is prompted with the five stages of questions in
the sequential order of P1, P2, P3, B,M . In this order, the model can only infer the questions in the succeeding stages after
getting the predicted answer from the preceding stages.

E.2. Trajectory Tokenization Details

To generate action sequences (i.e., ego future trajectories) directly with the language model we use for building the graph, we
adopt the method of RT-2 [85]. This process entails the discretization and tokenization of the continuous trajectory.

Initially, we analyze the distribution of the future trajectories within the nuScenes dataset. To effectively convert the
continuous (x, y) coordinate space into a discrete set of actions, we partition each coordinate axis into 256 discrete intervals.
This granularity ensures a sufficient level of detail while maintaining a manageable number of tokens for the language model.

Each discretized bin corresponds to a unique token within the vocabulary of the language model. We extract the token
identifiers (IDs) for numeric tokens within the vocabulary. To ensure coherence and preserve the ability to express numerical
values, we omit single-digit tokens from this mapping process. Out of the remaining numeric tokens, a subset of 256
token IDs is selected to represent the trajectory data. In addition to these, we introduce two special tokens designated for
marking the start and end of a trajectory sequence – the start-of-trajectory (SOT) token and the end-of-trajectory (EOT) token,
respectively. This tokenization scheme enables us to encode complex trajectory information as a sequence of tokens that a
language model can process. Using this mapped vocabulary, the language model can generate predicted future trajectory
sequences by outputting a series of tokens, which are then translated back into the coordinate space.

F. Experiments
In this section, we introduce the details of experiments, including implementation details of each subsection in Section 4 in
the main paper, more metrics on the VQA part, more ablation and comparison on computational complexity.

F.1. Implementation Details

Here we explain the implementation details for the training and validation settings used in our experiments of each of each
subsections in Section 4 in the main paper.
Fine-tuning Details. We configure the learning rate as 0.0001, no learning-rate scheduler, random seed as 1234, and other
settings following the default LoRA [24] configuration. For the BLIP-2 model, we use a maximal sequence length of 400,
and other hyperparameters remain the same as the official BLIP-2 implementation.
Implementation Details for Experiment in Section 4.1 & 4.4. During training, we utilize all QAs as input per frame,
with a subset of them having contexts (questions from P2,3, B, and M ). The contexts are extracted from ground truth,
following the teacher-forcing setting [37, 67] generally adopted in recurrent networks. As for inference, due to the variant
complexity of the scenarios, the count of P1−3 QA per frame is highly imbalanced across the dataset, with a variance of over
260 on DriveLM-nuScenes. To balance the impact of this, we compute the GVQA Scores on only a subset of QA associated
with each frame. To extract the QA subset, we design a set of QA patterns for each stage based on the questions generally
associated with that stage. We ensure that for all our validation frames, each stage has at least one question matched with
the designed pattern. In this process, except for the questions in stage P1, all questions in other stages have context from the
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Context
DriveLM-nuScenes

Off-the-Shelf BLIP-2 DriveLM-Agent

BLEU-4 ↑ METEOR ↑ CIDEr ↑ ROUGE_L ↑ SPICE ↑ GPT ↑ Comp. ↑ BLEU-4 ↑ METEOR ↑ CIDEr ↑ ROUGE_L ↑ SPICE ↑ GPT ↑ Comp. ↑
None 0.022 3.317 0.1185 7.205 4.336 42.97 1.064 51.89 35.81 2.463 66.79 42.56 71.39 30.04
Graph 0.022 3.882 0.0771 7.397 7.710 45.21 0.859 53.09 36.19 2.786 65.58 49.54 72.51 31.66

GT 0.022 4.397 0.0758 8.033 8.192 41.10 1.315 53.06 36.64 3.069 66.69 50.29 72.94 32.41

Table 10. Graph-structured reasoning facilitates improved VQA with VLMs. Completeness measures how many questions are cor-
rectly answered in one frame of data. The improvement trends are not consisten across different conventional metrics, thus we need the
GPT score as the main metrics as it evaluates the performance more comprehensively.

Method Behavior Motion Behavior (B) Motion (M )
Context Context Acc. ↑ Speed ↑ Steer ↑ ADE ↓ FDE ↓

Command Mean - - - - - 7.98 11.41
UniAD-Single - - - - - 4.16 9.31
BLIP-RT-2 - - - - - 2.78 6.47

None B 35.70 43.90 65.20 2.76 6.59
P1 B 38.20 43.67 70.74 2.67 6.41

DriveLM-Agent P2 B 39.52 44.20 78.67 2.62 6.19
P3 B 34.62 41.28 64.55 2.85 6.89

P1−3 B 39.73 54.29 70.35 2.63 6.17

BLIP-RT-2 - B* 100.0 100.0 100.0 2.41 5.79

Table 11. Zero-shot Generalization across Sensor Configurations. B* denotes using ground truth behavior QA as context for motion
task. Results on 1k randomly sampled frames from the Waymo val set after training on DriveLM-nuScenes. Our key observation is that
the higher the accuracy of the behavior task, the better the performance of the motion task.

previous stage’s QA, where the answers are derived from the prediction in the preceding steps. Two specific graph structure
examples can be found in Fig. 10 and Fig. 11.

Implementation Details for Experiment in Section 4.2. The model is trained in the same scheme as in Section 4.1 & 4.4,
and the training set is the DriveLM-nuScenes train split. During the inference, as there are no annotation on the Waymo (not
even questions), we devise the question in a rule-based manner. Specifically, we re-use the general-purpose questions in the
perception stage from DriveLM-nuScenes for Waymo as the starting questions. Then we try to find if there is any objects in
the answer that is matched in the DriveLM-nuScenes annotation, such as “pedestrians”, “cars”, “trucks” and so on. Then, we
generate the questions based on those matched objects automatically, which serve as the following questions in the prediction
and the planning stages. A specific graph structure example can be found in Fig. 12.

Implementation Details for Experiment in Section 4.3. For the generalization experiment in Section 4.3 we add two new
questions to the graph: (1) Is there a person in the scene? and (2) if the answer to the first question is yes we ask What should
the vehicle do based on the pedestrian that is crossing the road? if the answer is no we ask What should the ego vehicle do?.
The answer to the second question gets concatenated to the context of the final behavior question. Three examples can be
found in Fig. 13.

F.2. Results with More Metrics in VQA

In Table 10, we provide the performance under BLEU-4 [52], METEOR [38], CIDEr [69] and ROUGE-L [43] of the Table 5
in the main paper. One key observation is that different metrics reflect different trends in the performance, and the improve-
ment is not consistent across all these metrics. This brings us the motivation to use the GPT Score as the main metric in the
VQA evaluation part.

F.3. Ablation on Zero-shot Generalization across Sensor Configurations

In Table 11, we provide more settings of context in the zero-shot generalization across sensor configurations as in Table 3 in
the main paper. One key observation is that the higher the accuracy of the behavior task, the better the performance of the
motion task. With more context in the behavior task, the accuracy improvement mainly originates from the improvement of
the speeding accuracy, which finally affects the FDE score.
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F.4. Computational Complexity

In Table 6, we provide a comparison of the computational complexity of DriveLM-Agent to UniAD-Single. A future direction
would be caching the vision tokens and batching the different question patterns, which can speed up the inference time
fundamentally.

G. Qualitative Results
In this section, we show the qualitative results of the experiments, including VQA on our DriveLM-nuScenes, generalization
results across sensor data on Waymo, and generalization results to unseen objects on DriveLM-CARLA.

G.1. DriveLM-nuScenes

This section shows the qualitative examples for the DriveLM-nuScenes. In Fig. 10, we showcase a detailed example of
GVQA reasoning process on DriveLM-nuScenes, encompassing P1−3 QA and the behavior task. We compare the predicted
answers with ground truth and provide SPICE scores and GPT scores. In this figure, the second question in the prediction
stage represents a typical error. Due to the input of single-frame images, our model often struggles to accurately determine
the correct movement status of objects. This judgment is indeed challenging even for humans. Furthermore, in Fig. 11, we
present additional qualitative results to showcase our model’s performance.

G.2. Waymo

This section demonstrates the generalizability of our model across sensor configurations. Fig. 12 illustrates the results of our
model, trained on DriveLM-nuScenes, when applied to inference on Waymo. As we do not annotate data on Waymo, the
questions are manually defined, and ground truth is not provided. These results showcase the robust generalization capability
of our model.

G.3. DriveLM-CARLA

In this section, we provide qualitative examples for the CARLA dataset.
Generalization to the unseen pedestrian scenario. Fig. 13 shows the generated behaviors for the generalization test set
on the unseen pedestrian scenario. The first example, illustrated on the top of Fig. 13, demonstrates a successful situation
where DriveLM-Agent accurately recognizes a pedestrian. It subsequently infers the appropriate action to undertake, which
in this case, is to stop the vehicle. The behavior generation is able to interpret this context, resulting in the correct behavior
pattern, as evidenced by the ego vehicle coming to a complete stop. The other two examples represent the predominant
failure modes of DriveLM-Agent in scenarios involving pedestrians. The middle example of Fig. 13 shows the case where
the model still detects the pedestrian. However, it fails to translate this detection into the correct behavior. The final example,
shown at the bottom, highlights a more severe limitation where the model completely overlooks the pedestrian. In such
instances, DriveLM-Agent acts as if the pedestrian is non-existent, which consequently results in it not executing any evasive
or stopping maneuvers, posing a significant risk in a real-world scenario.
Graph Visual Question Answering. This section presents two examples of the graph visual question answering tasks using
the CARLA dataset to evaluate the performance of DriveLM-Agent (Fig. 14). We only show a subset of the evaluated
questions. In the first example the ego vehicle drives behind another vehicle. The primary task is to follow the road and
adjust the speed in accordance with the leading vehicle. Our results indicate that DriveLM-Agent demonstrates proficient
scene understanding by accurately identifying all important objects in the scene. Despite the ground truth data indicating
occasional inaccuracies in object color labeling by the CARLA simulator, DriveLM-Agent maintains reliable performance in
object recognition. Additionally, the model can identify the vehicle in front and reason about what to do based on the leading
vehicle.

The second example takes place at an intersection regulated by a stop sign. DriveLM-Agent identifies all objects and can
reason about the situation. It correctly identified that it needs to stop not simply due to the stop sign, but primarily because
of a motorcycle positioned ahead. This implies that DriveLM-Agent is capable of prioritizing dynamic obstacles over traffic
control devices under certain circumstances.
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Behavior

Prediction

PlanningBehavior

Perception

Answer: There are two cars, one truck and one 
pedestrian to the front of ego car.

Question: What are important objects to 
the front of the ego car? 

Answer: The ego vehicle is going straight. The 
ego vehicle is driving fast.

SPICE:  1.0
GPT score: xxx.

Answer: Many cars are moving and one is 
parked

Question with pred-context: Perception Q: 
What are objects to the front of the ego car? 
Perception A: There are many cars, one 
truck and one pedestrian to the front of ego 
car. Q: What is the status of the truck that is 
to the front of the ego car?

Question with pred-context: Perception Q: 
What are objects to the front of the ego car? 
Perception A: There are many cars, one truck 
and one pedestrian to the front of ego car. Q: 
What is the status of the pedestrian that is to 
the front of the ego car?

SPICE:  1.0
GPT score: xxx.

SPICE:  1.0
GPT score: xxx.

SPICE:  1.0
GPT score: xxx.

GT: The ego vehicle is going straight. The 
ego vehicle is driving fast.Question with no context: In this scenario, 

what are dangerous actions to take for the 
ego vehicle?

Answer:

Question with pred-context: This is previous 
question: What are important objects to the 
front of the ego car? This is previous 
answer: There is one bus to the front of the 
ego car. In this scenario, what are 
dangerous actions to take for the ego 
vehicle?

Answer: Accelerate 
and go ahead.

Question with gt-context: This is previous 
question: What are important objects to the 
front of the ego car? This is previous 
answer: There is one bus to the front of the 
ego car. In this scenario, what are 
dangerous actions to take for the ego 
vehicle?

Answer:
SPICE:  1.0
GPT score: xxx. SPICE:  1.0

GPT score: xxx.
SPICE:  1.0
GPT score: xxx.

GT: Accelerate and go ahead.

SPICE:  0.667 GPT score: 0

SPICE:  1.0 GPT score: xxx.

Planning

GT: The ego vehicle is going straight. The ego 
vehicle is driving fast.

Scene ImagePerception

SPICE:  0.783 GPT score: 40

GT: There are many pedestrians, one trailer, three cars, one 
truck to the front of the ego car. 

Question: What are objects to the front of the ego car? 

Answer: There are many cars, one truck and one 
pedestrian to the front of ego car.

Question with pred-context: Perception Q: 
What are objects to the front of the ego car? 
Perception A:There are many cars, one truck 
and one pedestrian to the front of ego car. Q: 
What is the status of the cars that are to the 
front of the ego car?

GT: Three cars are moving.

Answer: One truck is moving.

GT: One truck is parked.

Answer: One pedestrian is moving and one 
is standing.

GT: Many pedestrians are moving.

Question with pred-context: Perception Q: What are objects to the front of the ego car? 
Perception A: There are many cars, one truck and one pedestrian to the front of ego car. 
Prediction Q: What is the status of the cars that are to the front of the ego car? Prediction A: 
Many cars are moving and one is parked. Prediction Q: What is the status of the truck that is to 
the front of the ego car? Prediction A: One truck is moving. Prediction Q: What is the status of 
the pedestrian that is to the front of the ego car? Prediction A: One pedestrian is moving and 
one is standing. Q: In this scenario, what are safe actions to take for the ego car?

GT: Keep going at the same speed, decelerate 
gradually without braking.

Answer: Keep going at the same speed, 
accelerate and go ahead.

Question with pred-context: Perception Q: What are objects to the front of the ego car? 
Perception A: There are many cars, one truck and one pedestrian to the front of ego car. 
Prediction Q: What is the status of the cars that are to the front of the ego car? Prediction A: 
Many cars are moving and one is parked. Prediction Q: What is the status of the truck that is to 
the front of the ego car? Prediction A: One truck is moving. Prediction Q: What is the status of 
the pedestrian that is to the front of the ego car? Prediction A: One pedestrian is moving and 
one is standing. Planning Q: In this scenario, what are safe actions to take for the ego car? 
Planning A: Keep going at the same speed, accelerate and go ahead. Q: Predict the action 
template of the ego car. SPICE:  1.0 GPT score: 95

SPICE:  1.0 GPT score: 50

SPICE:  0.667 GPT score: 10SPICE:  0.667 GPT score: 40

Figure 10. Detailed qualitative results on DriveLM-nuScenes. The graph prompting process can be divided into different tasks, and
different QAs in each task revolve around different objects.
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Perception VQA

Question with no context:  What are 
objects to the front of the ego car? 

GT: There are three cars, one motorcycle to 
the front of the ego car.

Answer: There are two cars, one truck, 
one pedestrian to the front of the ego car.

Question with pred-context:  Perception 
results + Prediction results + Planning 
results  + Predict the action template of 
the ego vehicle. 

Prediction VQA

Question with pred-context:  Perception 
results + What is the status of the cars that 
are to the front of the ego car? 

Answer:  Two cars are moving and one 
is parked.

Question with pred-context:  Prediction 
results + In this scenario, what are safe 
actions to take for the ego vehicle?
 

GT:  Brake gently to a stop.

Answer:  Keep going at the same speed, 
accelerate and go ahead.

Planning VQA

Behavior VQA
GT:  The ego vehicle is going straight. The 
ego vehicle is driving fast.

Answer:  The ego vehicle is going 
straight. The ego vehicle is driving slowly.

GT: Two of the cars are moving and one 
is parked.

SPICE:0.5333

GPT score: 30

SPICE:  1.0

GPT score: 100

SPICE:  0.0

GPT score: 0

SPICE:  1.0

GPT score: 50

GT: There are pedestrians, three traffic 
cones, three cars to the front of the ego car.

Answer:  The ego vehicle is going 
straight. The ego vehicle is driving slowly.

GT:  The ego vehicle is going straight. The 
ego vehicle is not moving.

Answer: There are two cars, one 
pedestrian to the front of the ego car.

Question with pred-context:  Perception 
results + Prediction results + Planning 
results + Predict the action template of 
the ego vehicle. 

Question with pred-context:  Prediction 
results + In this scenario, what are safe 
actions to take for the ego vehicle?
 

Question with pred-context:  Perception 
results + What is the status of the cars 
that are to the front of the ego car? 

Question with no context:  What are 
objects to the front of the ego car? 

GT: Two of the cars are moving and one 
is parked.

Answer:  Three cars are moving and one 
is parked.

GT: Decelerate gradually without braking, 
brake gently to a stop.

Answer:  Keep going at the same speed, 
accelerate and go ahead.

SPICE:  0.5556

GPT score: 60

SPICE:  0.6666

GPT score: 90

SPICE:  0.0

GPT score: 0

SPICE:  0.8571

GPT score: 70

Perception VQA

Prediction VQA

Planning VQA

Behavior VQA

Figure 11. More qualitative results on DriveLM-nuScenes. The examples in the figure illustrate the robust ability of our DriveLM-Agent
to perform VQA tasks in driving scenarios.
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Answer: There are two cars, one truck, 
one pedestrian to the front of the ego car.

Answer: Two cars are parked and one is 
moving.

Question with no context:  What are objects to the front of 
the ego car? 

Question with pred-context:  Perception results + Prediction 
results + Planning results  + Predict the action template of the 
ego vehicle. 

Question with pred-context:  Perception results + What is 
the status of the cars that are to the front of the ego car? 

Question with pred-context:  Prediction results + In this 
scenario, what are safe actions to take for the ego vehicle?
 

Answer:  Keep going at the same speed, 
accelerate and go ahead.

Answer:  "The ego vehicle is going straight. 
The ego vehicle is driving fast..

Perception VQA 

Prediction VQA 

Planning VQA 

Behavior  VQA

Question with no context:  What are objects to the front of 
the ego car? 

Answer: There are many cars, one pedestrian 
to the front of the ego car。

Question with pred-context:  Perception results + Prediction 
results + Planning results + Predict the action template of the 
ego vehicle. 

Question with pred-context:  Perception results + What is the 
status of the pedestrians that are to the front of the ego car? 

Answer:  One pedestrian is moving and one 
is standing.

Question with pred-context:  Prediction results + In this 
scenario, what are safe actions to take for the ego vehicle?
 

Answer:  Keep going at the same speed,  
decelerate gradually without braking..

Answer:  The ego vehicle is going straight. 
The ego vehicle is driving slowly.

Perception VQA 

Prediction VQA 

Planning VQA 

Behavior VQA 

Figure 12. Qualitative results on Waymo. We present two examples showcasing the generability of DriveLM-Agent to new sensor
configurations, demonstrating the strong generalization capability of DriveLM-Agent.
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Behavior

Answer: The ego vehicle is going straight. The ego vehicle is 
driving slowly.

Context: The ego vehicle should stop and give the pedestrian
the right of way. Question: Predict the behavior of the ego
vehicle.

Scene Image

Answer: The ego vehicle should stop and give the pedestrian 
the right of way.

Prediction

Perception
Question: Is there a person in the scene?

Answer: Yes, there is a person in the scene.

Context: Yes, there is a person in the scene. Question: What
should the ego vehicle do based on the pedestrian that is
crossing the road?

Behavior

Answer: The ego vehicle is going straight. The ego vehicle is 
not moving.

Context: The ego vehicle should stop and give the pedestrian
space to cross. Question: Predict the behavior of the ego
vehicle.

Scene Image

Answer: The ego vehicle should stop and give the pedestrian 
space to cross.

Prediction

Perception
Question: Is there a person in the scene?

Answer: Yes, there is a person in the scene.

Context: Yes, there is a person in the scene. Question: What
should the ego vehicle do based on the pedestrian that is
crossing the road?

Behavior

Answer: The ego vehicle is going straight. The ego vehicle is 
driving fast.

Context: The ego vehicle should follow the road to the next
junction. Question: Predict the behavior of the ego vehicle.

Scene Image

Answer: The ego vehicle should follow the road to the next 
junction.

Prediction

Perception
Question: Is there a person in the scene?

Answer: No, there is no person in the scene.

Context: No, there is no person in the scene. Question: What
should the ego vehicle do?

Figure 13. Qualitative results on the generalization test set in DriveLM-CARLA. We show three examples of DriveLM-Agent handling
the pedestrian scenario. The first example shows a success case and the second and third show two common failure cases of the model.
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Prediction

Answer: The ego vehicle should remain 
stopped and stay behind other vehicles that 
are standing at the stop sign.

Context: Yes, there is another car in front.
Question: What should the ego vehicle do
based on the vehicle in front?

Perception

GT: The important objects in the scene are a junction, a stop 
sign and the green motorcycle to the front of the ego vehicle.

Question: What are important objects to the front of the ego
car?

Answer: The important objects in the scene are a junction, a 
stop sign, the black car to the front left of the ego vehicle and 
the green motorcycle to the front of the ego vehicle.

Context: The important objects in the scene
are a junction, a stop sign, the black car to the
front left of the ego vehicle and the green
motorcycle to the front of the ego vehicle.
Question: What should the ego vehicle do
based on the stop sign?

GT: The ego vehicle should remain stopped 
and stay behind other vehicles that are 
standing at the stop sign.

Answer: The ego vehicle should brake to 
maintain a safe distance to the vehicle in 
front.

GT: The ego vehicle should brake to maintain 
a safe distance to the vehicle in front.

Answer: The ego vehicle should stop 
because of the green motorcycle that is in 
front of it.

GT: The ego vehicle should stop because of 
the green motorcycle that is in front of it.

Planning
Context: The ego vehicle should brake to
maintain a safe distance to the vehicle in front.
The ego vehicle should remain stopped and
stay behind other vehicles that are standing at
the stop sign. Question: Does the ego vehicle
need to stop? Why?

Scene Image

Prediction

Answer: The ego vehicle should drive with the 
same speed as the car in front. As they are 
currently driving with the same speed the ego 
vehicle can maintain its speed

Perception

GT: The important objects in the scene are the maroon car to 
the front left of the ego vehicle and the olive van to the front of 
the ego vehicle.

Question: What are important objects to the front of the ego
car?

Answer: The important objects in the scene are the maroon 
car to the front left of the ego vehicle and the maroon van to 
the front of the ego vehicle.

Context: Yes, there is another car in front.
Question: What should the ego vehicle do
based on the vehicle in front?

GT: The ego vehicle should drive with the 
same speed as the car in front. As they are 
currently driving with the same speed the ego 
vehicle can maintain its speed.

Answer: Yes, there is another car in front.

GT: Yes, there is another car in front

Answer: There is no reason for the ego 
vehicle to stop.

GT: There is no reason for the ego vehicle to 
stop.

Planning
Context: The ego vehicle should drive with
the same speed as the car in front. As they are
currently driving with the same speed the ego
vehicle can maintain its speed. Question:
Does the ego vehicle need to stop? Why?

Scene Image

Perception
Context: The important objects in the scene
are a junction, the red traffic light, the
maroon car to the front left of the ego
vehicle and the black car to the front of the
ego vehicle. Question: Is there another
vehicle right in front of the ego vehicle?

Figure 14. Qualitative VQA results in DriveLM-CARLA. The first example shows how DriveLM-Agent deals with a situation with a
vehicle directly in front of the ego vehicle. The second example shows an intersection with a stop sign and other traffic participants waiting
in front of the ego vehicle at the stop sign.
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H. More Related Work
In this section, we supplement the related work mentioned in the main paper.
Reasoning Over Graph Structure. Reasoning is one of the basic forms of simulated human thinking, enabling the derivation
of new judgments from one or several existing judgements [9]. Many prior reasoning works have been grounded in graph-
based approaches [4, 10, 61, 74]. XNMs [61] employs scene graphs for explainable and explicit reasoning with structured
knowledge. KPRN [74] utilizes knowledge graph for reasoning and applies it to recommender systems. GoT [4] models
LLM-generated information as an arbitrary graph and brings the LLM reasoning closer to brain mechanisms. Inspired by
these successful attempts, we try to link the stages of perception, prediction, and planning in autonomous driving through a
graph, enabling the model to grasp the reasoning process and deduce unseen scenarios based on learned graph structure.
Vision-language Benchmarks for Driving. An increasing number of vision-language datasets have been proposed for AD
systems [15, 34, 35, 47, 55, 59, 78, 79, 84]. NuScenes-QA [55] and NuPrompt [79] provide perceptual information as text
by describing the positions and states of surrounding objects. BDD-X [34] provides reasons for the ego vehicle’s actions in
natural language descriptions. DRAMA [47] and Rank2Tell [59] identify crucial objects and provide corresponding driving
suggestions. However, these datasets focus on scene-level context or individual objects. DriveLM fills this gap in the literature
by organizing language annotations from object-level and task-level with a graph structure.
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