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Abstract

Adopting language descriptions to generate driving be-001
haviors can offer a scalable and intuitive method for human002
operators to simulate varied driving scenarios. However,003
the scarcity of large-scale annotated language-trajectory004
data makes this approach challenging. To address this gap,005
we propose Text-to-Drive (T2D) to synthesize diverse driv-006
ing behaviors via Large Language Models (LLMs). We007
introduce a knowledge-driven approach that operates in008
two stages. First, we employ the embedded knowledge of009
LLMs to generate diverse descriptions of driving behaviors.010
Then, we leverage LLM’s reasoning capabilities to synthe-011
size them into simulation. At its core, T2D employs an LLM012
to construct a state chart that maps low-level states to high-013
level abstractions. This strategy aids in downstream tasks014
such as summarizing low-level observations, assessing pol-015
icy alignment with behavior description, and shaping the016
auxiliary reward, all without needing human supervision.017
With our knowledge-driven approach, we demonstrate that018
T2D generates more diverse trajectories compared to other019
baselines and offers a natural language interface that al-020
lows for incorporating human preference. Please check our021
website for more examples: here022

1. Introduction023

In this work, we utilize the embedded knowledge of Large024
Language Models (LLMs) to generate diverse descriptions025
of driving behaviors and then synthesize them in simulation.026

Simulators. Simulators have emerged as an effective027
tool for training and evaluating safety-critical systems, such028
as autonomous vehicles. Model-based simulators [8, 22] are029
capable of modeling real-world physics and constructing030
photorealistic environments. Continual improvements have031
integrated tools like Scenic [12]. However, these simulators032
often struggle with a sim-to-real domain gap [31]. In re-033
sponse, data-driven simulators [1, 2, 13, 15, 20] can bridge034
this gap by leveraging real-world driving data [4, 17, 27] to035
reconstruct real-world scenes and synthesize novel views.036

Behavior Generation. Despite their advantages, current 037
data-driven simulators are unable to control the behaviors of 038
surrounding vehicles. Recent advancements in data-driven 039
traffic generation methods have employed neural networks 040
to synthesize new scenarios [3, 10, 23, 28, 29, 32], offer- 041
ing avenues for more realistic traffic modeling. Comple- 042
menting these efforts, research has expanded into multi- 043
ple directions: learning latent representations from driving 044
datasets [7, 16], incorporating human preferences with rein- 045
forcement learning [5], and exploring generative scenarios 046
through diffusion models [5, 6]. These efforts collectively 047
enhance the controllability of simulated environments, yet 048
they cannot take text descriptions of driving behaviors as in- 049
puts. The necessity of manual labeling for driving behaviors 050
in recent research [7, 25] further highlights this limitation. 051

More recently, language-conditioned traffic generation 052
has been explored in [24, 30, 34]. [30] leverages LLMs to 053
translate textual descriptions of traffic scenes directly into 054
driving trajectories. However, while their approaches focus 055
on low-level trajectory generation, ours explores the gen- 056
eration of diverse high-level behaviors such as “tailgating”. 057
In this work, we build upon the capabilities of LLMs for 058
zero-shot generation of reward functions [19, 26, 33]. Our 059
research explores this capability further and extends it to 060
diverse driving behaviors for simulation, especially in sce- 061
narios lacking a ground-truth fitness function. 062

We introduce T2D, a knowledge-driven approach that 063
utilizes LLMs to generate diverse descriptions of driving 064
behaviors and then synthesizes them in simulation. This 065
approach complements data-driven simulators that depend 066
only on human-driving data. Given a behavior descrip- 067
tion, T2D generates a mapping of low-level states (e.g: ve- 068
hicle position, heading, speed) to high-level abstractions 069
(e.g. “on the on-ramp”, “near the end of on-ramp”, and 070
“merged”). By leveraging this abstract state representation, 071
transitions are defined to capture the temporal dynamics of 072
the behavior, effectively embodying temporal logic. Using 073
T2D, we generated 18 behaviors from language descrip- 074
tions. We make the following contributions: 075

• We introduce T2D, a knowledge-driven method for sim- 076
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Figure 1. Overview. Left: First, an LLM generates diverse descriptions of driving behaviors, which can incorporate human preferences
through a natural language interface. Middle: Next, an LLM generates a low-level state translator (LLST), primary function, and auxiliary
function from a description of a driving behavior. The LLST translates low-level states to abstract states (see example in bottom middle
block) and then records their state visit history (see example in bottom right block). The primary function gives a reward only when the
vehicle exhibits the target behavior, using a finite-state machine for formal verification of behavior emergence (see example in bottom left
block). The auxiliary function provides rewards for reaching intermediate states and can be iteratively updated. Right: Finally, we employ
a standard multi-agent RL framework to train a driving policy using the primary and auxiliary functions as guidance.

ulation that enables (i) text-to-driving behavior synthesis,077
and (ii) diverse driving behavior generation.078

• Our method facilitates the use of LLM-based reasoning079
by encapsulating the logic in state machines. This facili-080
tates complex policy training processes such as: (i) sum-081
marizing low-level observations, (ii) reasoning about be-082
havioral alignment, and (iii) iteratively updating the aux-083
iliary function, without any human supervision.084

• We demonstrate our method effectively retains the behav-085
ioral context across natural language, code, and driving086
policy, enabling it to simulate a driving behavior from a087
description. Additionally, T2D not only generates more088
diverse trajectories compared to baselines but also offers089
a language interface to integrate human preferences.090

2. METHOD091

Generating Behavior Descriptions. In our knowledge-092
driven approach, we use gpt-4 to generate descriptions093
of diverse driving behaviors, L ∼ πL(.|scene) from a de-094
scription of a scene.095
Low-Level State Translator. Given a behavior description096
L, our code generation model πC , generates a low-level097
state translator, M ∼ πC(.|L), which has three respon-098

sibilities: First, M decomposes the behavior into abstract 099
states, Q. Each abstract state, q ∈ Q, captures an essential 100
aspect of the driving behavior. For example, in the case of 101
“merging late on the on-ramp”, q could be any of “on the on- 102
ramp,” “merging,” and “near the end of the on-ramp” as il- 103
lustrated in Figure 1. Second, M is constructed by the LLM 104
as a statechart, mapping lower-level states to abstract states. 105
This statechart is defined as a tuple M = (Q, T , E, U,G), 106
where T is the set of transitions triggered by a low-level 107
event E, conditioned on a guard in G which are boolean 108
functions that return true under certain conditions Finally, 109
the update action in U records each abstract state visit as a 110
boolean value over a rollout of T timesteps in the state his- 111
tory, HQ : Q → {true, false}T . This is extremely effective 112
at summarizing low-level observations back to the code and 113
language space (see Figure 2). 114

Primary Reward Function. The primary function RP, 115
generated by an LLM, takes HQ as input and returns a 116
reward, RP : HQ → {0, 5}. This function serves two 117
purposes: first, it assesses the behavioral alignment of the 118
driving policy πP with the target behavior L; second, it 119
awards a large reward when the vehicle demonstrates the 120
target behavior to guide the driving policy. To generate 121
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Figure 2. Left: The auxiliary iterator LLM analyzes the policy after training to decide whether and how to adjust the auxiliary function
based on the history of abstract state visits. Right: The right figure illustrates the LLM’s reasoning process, where it reads a high-level
behavior sequence, analyzes it, and then provides an accurate summary of the low-level trajectories.

Behaviors
Emergence Rate

(%)
Collision Rate

(%)
Avg. Speed

(m/s)
1. Decelerate through intersection 56.67 40.00 7.42
2. Consistent speed crossing 63.33 20.00 5.73
3. Abrupt full stop at intersection 56.67 13.33 1.06
4. Erratic speed 93.33 26.67 5.60
5. Rolling stop at intersection 73.33 30.00 5.10
6. Rapid acceleration at intersection 76.67 43.33 21.24

Figure 3. Diverse driving behaviors at an intersection.

RP ∼ πC(.|(Q,L)), we combine the abstract state names122
Q, and behavior description L, as inputs to πC . The LLM123
constructs RP as a finite-state machine (FSM) that models124
the target behavior L. This FSM can be described as a tu-125
ple, RP = (Q,Σ, δ, q0, F ); where Σ = {q|q ∈ Q} is the126
input alphabet, δ : Q × Σ → Q is the transition function.127
Upon reaching the accepting states, F , the FSM awards a128
reward of 5 to the vehicle. The formal structure of the FSM129
provides a framework for verifying the abstract behavior se-130
quences given by HQ.131

Auxiliary Reward Function. To improve exploration effi-132
ciency, we use an auxiliary function, Raux : S,A,HQ →133
[−1, 1], that takes low-level state S, action A, and his-134

tory HQ, as inputs and returns a reward. Our auxiliary 135
function is generated using πC , with RP and L as inputs, 136
Raux ∼ πC(.|(RP,L)). 137

Auxiliary Function Iterator. To mitigate unintended be- 138
haviors from reward shaping, we iteratively update Raux us- 139
ing a code generation model, R′

aux ∼ πC(.|(Raux,Hq,L)); 140
where R′

aux is the new auxiliary function, and (Raux,Hq,L) 141
are the inputs to the LLM. The history Hq provides the 142
LLM with high-level insights into a rollout, allowing it to 143
adjust the reward incentive structure accordingly. For an 144
illustration, see the left of Figure 2. 145

Training Driving Policy. We employed a multi-agent 146
implementation of the Advantage Actor-Critic algorithm 147
(MAA2C) [21] to learn the driving policies πP . We employ 148
a concurrent training strategy in a cooperative environment 149
under partial observation conditions. 150

3. EXPERIMENTS 151

Policy Alignment. In Figure 5a, we show that there is 152
strong agreement between the language and code domain, 153
we compute the pairwise cosine similarity between the sen- 154
tence embedding of L and the code embedding of Raux us- 155
ing CodeBERT [11]. In addition, Figure 5b shows a strong 156
agreement between code and driving policy domain. We 157
quantify agreement by computing the expected cumulative 158
reward of πP using Raux. Specifically, we define the ele- 159
ment AC↔P

ij of the agreement matrix AC↔P as: 160

AC↔P
ij = Eτ∼πP

j

[
T∑

t=1

Ri(St,At)

]
(1) 161

Then, we compare these values relative to the performance 162
of alternate driving policies on the same reward function. 163
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Behaviors Emergence Rate (%) Collision Rate (%) Avg. Speed (m/s)
Tailgating 40.00 56.67 19.62
Accelerating in Congestion 100.00 73.33 30.18
Side-by-Side Driving 63.33 33.33 14.28
Following at a Safe Distance 93.33 0.00 31.79
Lane Weaving 73.33 36.67 15.52
Erratic Speed 53.00 63.33 29.96

Behaviors Emergence Rate (%) Collision Rate (%) Avg. Speed (m/s)
Early Deceleration on Ramp 80.00 30.00 12.46
Sudden Braking After Merging 80.00 13.33 9.79
Late Merging at Ramp End 86.67 0.00 13.17
Accelerative Merging 60.00 33.33 12.43
Merging with Speed Variation 96.67 6.67 8.72
Merging from Complete Stop 60.00 26.67 9.05

Figure 4. Diverse highway driving and merging behaviors.

(a) A diagonal line in the code and language agreement matrix indicates
that there is a high similarity between the text description and code, and
thus we show that the behavioral context is preserved across these domains.

(b) A diagonal line in the code and driving policy agreement matrix in-
dicates that the policy trained by the reward function was most optimal
compared to the other evaluated policies, and therefore we show that the
behavioral context is preserved across these domains.

Figure 5. Agreement matrix to show behavioral alignment.

Formally, we consider a reward function Ri to be in agree-164
ment with a policy πP

j if ∀k ̸= j,AC↔P
ij > AC↔P

ik . The165
intuition is to examine how each driving policy is evalu-166
ated by the auxiliary function. The presence of a diagonal167
line in AC↔P , seen in Figure 5b suggests strong alignment168
between the code and driving policy domain. As observed169
again, the “highway” environment showcases a prominent170
dark red diagonal that is surrounded by darker blue areas.171
This implies that the policies are highly specialized and172
are, therefore, behaviorally diverse. Finally, to verify πP ’s173
alignment with L, human annotators assess the behavior’s174
emergence rate across 30 rollouts. High emergence rates175
and visualizations in Figures 3 and 4 indicate consistent be-176
havior adherence and further demonstrate this alignment.177

Jensen-Shannon Divergence (IQR) ↑Methods Intersection Merge Highway
Random Policy (6 skills) 0.1197 (0.0019) 0.2297 (0.0040) 0.2515 (0.0022)
Random Policy (30 skills) 0.1385 (0.0014) 0.2250 (0.0084) 0.3033 (0.0007)
Human Expert (5 skills) 0.1686 (0.0313) 0.2595 (0.0239) 0.3686 (0.0442)
DIAYN (6 skills) 0.0107 (0.0062) 0.0152 (0.0038) 0.0254 (0.0021)
DIAYN (18 skills) 0.0163 (0.0039) 0.0211 (0.0058) 0.0319 (0.0014)
DIAYN (36 skills) 0.0181 (0.0079) 0.0083 (0.0027) 0.0195 (0.0067)
Ours (6 skills) 0.1845 (0.1085) 0.3397 (0.0523) 0.3039 (0.0729)

Table 1. Trajectory diversity using JSD

Driving Policy Diversity. We use an existing metric 178
introduced in [18] to measure the trajectory diversity via 179
the Jensen-Shannon Divergence (JSD). We report the me- 180
dian JSD across all agents on 30 different seedings for each 181
map in Table 1. To contextualize these findings, we bench- 182
marked against three different baselines: random behaviors, 183
unsupervised skill acquisition algorithms, and driving poli- 184
cies trained on expert-crafted reward functions [14]. Ran- 185
dom behaviors were generated by defining πP as a uniform 186
distribution at varied seeding. Next, we compared T2D to 187
Diversity is All You Need (DIAYN) [9], an established un- 188
supervised skill acquisition algorithm. We adapted DIAYN 189
into a multi-agent setting and trained for 3 different skill 190
counts per map (6, 18, and 36). We report the median DP in 191
Table 1. Our results indicate that T2D surpass random poli- 192
cies and DIAYN-generated policies across all tested scenar- 193
ios. Notably, T2D exhibits the highest DP in “merge” sce- 194
narios. Even in “intersection” and “highway” scenarios, our 195
approach demonstrates competitive diversity, only trailing 196
the human expert in “highway” scenarios. 197

4. CONCLUSION 198

In our work, we introduce Text-to-Drive to generate diverse 199
driving behaviors from natural language descriptions. With 200
our knowledge-driven approach, we demonstrate that T2D 201
generates more diverse trajectories compared to other base- 202
lines and offers a natural language interface that allows for 203
incorporating human preference. 204
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