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Abstract

The progression in autonomous driving technologies has
underscored the necessity for rigorous testing and valida-
tion methods to ensure safety and reliability. A primary
challenge in establishing such a testing framework lies in
the development of realistic and reactive simulated agents,
for both routine driving scenarios and safety-critical situ-
ations. To address this, we introduce Risk Aware Closed-
Loop agent simulation(RACL), a comprehensive framework
that respects the safety critical states and captures the nat-
ural progression of risk. By distinctly modeling normal and
risk states, we ensure efficient utilization of limited crash
data and high fidelity for both modes. Additionally, our ap-
proach employs risk monitoring and mode transition strate-
gies to enable a smooth shift from normal to risky scenarios.
We have provided both quantitative and qualitative results
to demonstrate the efficacy of our system.

1. Introduction
The rise of autonomous vehicles (AVs) marks a major shift
in transportation, aiming to improve mobility, traffic effi-
ciency, and reduce accidents. Yet, realizing full autonomy
poses challenges, especially in ensuring safety and relia-
bility.Central to addressing these challenges is the develop-
ment of simulation testing methodologies, considering the
high costs (both financial and in terms of social trust) and
inefficiencies associated with road testing. To make simu-
lation a viable tool for the development and testing of AV,
simulators need to produce agents that are both realistic and
responsive. These agents should facilitate the creation of
high-fidelity scenarios, encompassing both typical driving
situations and safety-critical events, that mirror real-world
occurrences. This capability is crucial for enabling the rig-
orous evaluation of AV performance across a broad spec-
trum of driving conditions.

However, human driving behavior is characterized by
high uncertainty due to diverse intentions and driving styles,

Figure 1. RACL is designed to enhance the generation of realistic
driving scenarios by integrating risk assessment into the simula-
tion process. It uses a learnt predictor to estimate the risk of the
whole scene at each timestep. Once high risk is detected, it auto-
matically switches from the normal driving policy to risky driving
policy for generating realistic safety-critical scenes.

making the construction of such generative models a press-
ing scientific challenge that needs to be addressed. Adding
to the complexity is the reality that human drivers exhibit an
average accident rate of approximately 1.9× 10−6 per mile
[12]. The scarcity of safety incident data poses substantial
hurdles in developing data-driven simulation models. Nev-
ertheless, considering the societal risks involved, there is a
critical need for these models to achieve extensive coverage
and maintain a stringent low error tolerance.

To address these challenges, this paper introduces a
novel approach to enable the realistic simulator for generat-
ing full spectrum realistic scenarios including normal driv-
ing and safety-critical states, leveraging both empirical data
and advanced simulation techniques. Our contribution in-
cludes:

• Introduced a risk monitoring mechanism that tracks the
evolution of risk throughout the simulation process.

• Proposed a framework for searching and generating risky
states, utilizing accident data efficiently.

• Attained a high level of realism in simulating both normal
driving conditions and safety-critical scenarios.
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Figure 2. Overview of our proposed system, RACL. Bottom: During the generation phase, the risk monitor analyzes the current state and
past information Xt . . . Xt−H . Depending on the assessed risk level, RACL chooses between two pathways:(1) For low risk, it employs
a normal motion predictor D(θ) for next step’s action.(2) For high risks, it utilizes a VAE encoder p(β) and D(θ) to identify an optimal
risky future state Xt+T∗. Upon determining this state, the framework generates subsequent motions using a goal-conditioned model and a
risky motion policy. Top: It illustrates our training pipeline and the flow of training data into each module.

2. Related work

Traffic simulation. Replaying logged behavior of all vehi-
cles in the scene can ensure the realistic behavior of each
agent while the whole environment can’t respond to new
behavior of AVs, leading to in simulation results. Creating
reactive agents that can respond in a human-like way is cru-
cial [15]. Traditional rule-based models, such as the Intelli-
gent Driver Model (IDM) [20] and MOBIL [13] are overly
accommodating and lack the diversity of human driving be-
haviors on a micro level, not strict and random enough to
meet the current testing needs. Data-driven deep learning
models are more promising than rule based ones consid-
ering their adaptability and capacity to learn complex pat-
terns. TrafficSim[19] utilizes GRU [5] and CNN to mimic
the behaviors of human drivers from real-world data. [23]
applies Transformer[21] with receding horizon prediction
mechanism for enhanced realism. TrafficGen[7] uses an
autoregressive neural generative model and Symphony [11]
combines learnt policies with a parallel beam search to im-
proves realism. Most work are focusing on imitating hu-
man’s driving behavior and evaluated on naturalistic sce-
narios collected from daily life with rare accidents.
Safety-critical scenario generation. Simultaneously, there
have been several efforts aimed at creating safety-critical
scenarios, addressing the need for efficient testing[6, 9].
Some work leverage prior knowledge: [16] uses equations
to generate random risk scenes while [2] reduces the driv-

able area by manipulating the surrounding vehicles via con-
straint optimization. Additionally, Waymo adopts a data-
driven approach to recreate fatal accidents by perturbing
key parameters based on collected data, as detailed in [18].
Furthermore, to actively create risky scenarios, some meth-
ods challenge the AV system in an adversarial manner. Ad-
vSim [22] crafts adversarial agent behaviors and updates
AV’s LiDAR sensor data accordingly to test system vulnera-
bilities. STRVE [17] learns a graph-based conditional VAE
as traffic prior, optimizing each agent’s behavior to provoke
collisions with a rule-based AV planner while KING [10]
utilizes kinematics gradients to find adversarial behaviors
targeting the actual AV. [4, 25] apply diffusion models with
a collision cost to promote adversarial agents during the in-
ference stage. However, modifying initial conditions or em-
ploying adversarial tactics can diminish the realism of agent
behaviors and, by extension, the entire simulation scenario.

While these strategies are effective for short-term test-
ing, there is a growing need for a comprehensive framework
capable of learning and adapting realistic agent reactions
in both normal driving scene and evolving safety-critical
driving scenarios for more extended simulation periods, as
pointed out in [8, 24].

3. Method
We represent the states of N agents at time t as Xt =
[xt

1, x
t
2, . . . , x

t
N ], where each agent’s state, xt

i, encompasses
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its current 2D position and heading information. An acci-
dent that occurs after time step t is designated as event At.
The risk level of the current situation is estimated by the
probability of event At, denoted by P(At|Xt . . . Xt−H),
with the system having access to H steps of historical
information. The set of risky states is defined as S =
{Xt|P(At|Xt . . . Xt−H) ≥ τ} with τ as a specified
threshold and the set of normal state as Sc correspondingly.

3.1. System Overview

As shown in Figure 2, there are three main components
in our system: (1) A risk monitor that identifies the criti-
cal timestep tc and risky agents within the scene. (2) two
motion predictors which capture the intrinsic differences
in driving strategies and uncertainty in human-driven ve-
hicles, D(θ) for normal scenes and D(γ) for safety critical
scenes; (3) risky state model pβ(Xt|Xt ∈ S) that learns the
distribution of risky states, and a goal-conditioned model
Tζ(X

t+1 . . . Xt+T |Xt . . . Xt−H , Xgoal) that imitates hu-
man driving behavior with the target state Xgoal as con-
straint.

For a given moment t, the training goal is to maximize
the likelihood of the subsequent T steps given the history of
the past H steps. This can be formulated as Equation (1):

argmax
θ,γ,ζ

EXt+T ...Xt−H∼pdata
L(θ, γ, ζ|Xt+T . . . Xt−H)

(1)
where the likelihood function is detailed below:

L(θ, γ, ζ|Xt+T . . . Xt−H)

=pθ,γ,ζ(X
t+1 . . . Xt+T |Xt . . . Xt−H)

=Dγ1(X
t ∈ S) +Dθ1(X

t+T ∈ Sc) + Tζ1(X
t ∈ Sc, Xt+T ∈ S)

We optimize θ, γ and ζ independently, each addressing
a different aspect: normal driving behaviors, high-risk situ-
ations, and the transition phase, respectively. The architec-
ture details are introduced in Sections 3.2 to 3.4

3.2. Risk Monitor

The risk estimator is trained independently from other com-
ponentsand operates through a dual-stage binary classifica-
tion mechanism. In the initial phase, an unsupervised re-
ward model is employed to distinguish accident data from
typical driving data. Following this, potential accident data
are further analyzed by another classifier. This classifier uti-
lizes an enhanced Bilateral-Branch Network (BBN)[3, 26]
with supervised training for a more nuanced classifica-
tion, assessing the presence of risky situations. This multi-
layered strategy extracts key features from imbalanced data,
achieving high precision.

3.3. Motion predictor

For the normal motion predictor D(θ), Transformer is
used as its backbone to learn from normal human driving

Figure 3. Demonstration for trajectories rolled out by normal pol-
icy (indicated in yellow) and risky policy activated upon risk de-
tection (shown in blue). See more details in Section 3.4

data and more training details can be found in [24]. It
learns to minic human driving behaviors in normal situa-
tions while adhering to vehicle dynamics constraints. i.e.
argminθ EXt+T ...Xt−H∼P(data|Xt+T∈Sc)pθ(X

t+1 . . . Xt+T |Xt . . . Xt−H).
Similarly, we trained Dγ with accident data.

3.4. Mode Transition

Risky State Solver We formulate the task of finding the
most likely risky state at time step t+T given Xt . . . Xt−H

as an optimization problem shown in Equation (2):

max
∆θ

pβ(X
t+T )

s.t. Xt+1 . . . Xt+T ∼ Dθ+∆θ(X
t . . . Xt−H)

||∆θ|| ≤ ϵ

(2)

Previously trained motion predictor Dθ is used to con-
struct the initial parameter space for locating the dynami-
cally most likely states in the next T steps given the past H
steps information. Simultaneously, a Variational Autoen-
coder (VAE) is learnt in an unsupervised manner to capture
the distribution of risky states. The encoder of this VAE,
acting as a proxy pβ(X

t+T ) to guide the search for the most
likely risky states near initial state Xt+T .
Goal Conditioned Model Once the optimal solution Xt+T

is found for 2, a learnt goal conditioned model Tζ trans-
ports the agent from current state Xt to target state Xt+T

realistically, such that Xt+T ∈ S and Xt+T ≈ Xgoal.

4. Experiments
4.1. Implementation Details

We chose roundabout as static environment for our ex-
periment, recognizing it as an challenging urban driving
environment for AVs, to validate our generation frame-
work. This real-world dataset was collected from a two-
lane roundabout located in Ann Arbor, Michigan, USA. All
the training and evaluation were conducted on this dataset,
adhering to the preprocessing steps outlined in NeuralNDE
, which served as our baseline also.
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(a) Sideswipe (b) Angle (c) Rear-end

Figure 4. Sampled simulation traces centered at 4 seconds before the noted accident with shadow lines to indicate past trajectories and
dotted lines for future paths. The top section depicts Neural NDE, while the bottom section presents RACL.

Method DKL(Speed)↓ DKL(Distance)↓ DKL(Yieldingv) ↓ DKL(Yieldingd) ↓ DKL(PET)↓
SUMO∗ 0.126 0.089 0.087 0.107 -
NeuralNDE[24] 0.008 0.004 0.005 0.005 0.017
RACL 0.005 0.003 0.005 0.005 0.016

Table 1. Quantitative evaluation of simulation traces at the two-lane roundabout. Results of SUMO are queried from [24].

4.2. Results

Quantative results As shown in Table 1, the speed and dis-
tance distribution of the agents generated by our model are
statistically closer to the ground truth than those produced
by both SUMO [14] and NeuralNDE [24]. In yielding sit-
uations, our results significantly surpass those of SUMO,
while showcasing distance and velocity metrics comparable
to those generated by NeuralNDE, which aligns with ex-
pectations given NeuralNDE’s proficiency in imitation the
whole driving set. Our improvements are primarily evident
in the transitions between different driving states. Utiliz-
ing Post Encroachment Time (PET)[1] to gauge scenario
complexity and potential conflict, we outperformed Neural-
NDE, showcasing our refined ability to handle and depict
more intricate driving conditions.
Qualitative results As depicted in Figure 4, our approach

successfully generates realistic interactions for various ac-
cident types. NeuralNDE often results in accidents within
crowded scenarios, whereas our method enables a more di-
verse and complex range of interactions, effectively captur-
ing the evolution of risk.

5. Conclusion and Future work
This paper presents a system capable of generating realis-
tic scenarios featuring both safe and safety-critical situa-
tions. It opens up the opportunity to rapidly adapt to various
maps and local accident data for specific autonomous driv-
ing tests. Future work will focus on introducing additional
distributional metrics to quantify the behaviors of simulated
agents on a finer grid. In the long term, we aim to use these
learned agents to train more robust and safer autonomous
driving systems, thereby closing the loop.
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