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Abstract

Reinforcement learning has been demonstrated to out-
perform even the best humans in complex domains like
video games. However, running reinforcement learning ex-
periments on the required scale for autonomous driving is
extremely difficult. Building a large scale reinforcement
learning system and distributing it across many GPUs is
challenging. Gathering experience during training on real
world vehicles is prohibitive from a safety and scalability
perspective. Therefore, an efficient and realistic driving
simulator is required that uses a large amount of data from
real-world driving. We bring these capabilities together and
conduct large-scale reinforcement learning experiments for
autonomous driving. We demonstrate that our policy per-
formance improves with increasing scale. Our best per-
forming policy reduces the failure rate by 64% while im-
proving the rate of driving progress by 25% compared to
the policies produced by state-of-the-art machine learning
for autonomous driving.

1. Introduction

In this paper, we set up a scalable reinforcement learning
framework and combine it with an efficient simulator for
autonomous driving based on real-world data. We then con-
duct experiments on billions of agent steps with different
model sizes in order to determine if we can overcome the
constrained state space of the simulator by using increas-
ingly more real-world data.

The main contributions of our work are:
1. We demonstrate how to use prerecorded real-world driv-

ing data in a hardware-accelerated simulator as part of
distributed reinforcement learning to achieve improving
policy performance with increasing experiment size.

2. We demonstrate that our largest scale experiments, us-
ing a 25M parameter model on 6000 h of human-expert
driving from San Francisco training on 2.5 billion agent
steps, reduced the failure rate compared to the current
state of the art [9] by 64%.

2. Related work
In this paper we present a hardware-accelerated au-
tonomous driving simulator for real-world driving scenar-
ios, which is similar to Waymax [6]. Waymax also trains
RL agents but only reported results from 30 million agent
steps, approximately two orders of magnitude less than our
experiments.

Training highly performant policies in complex and con-
tinuous real-world domains has mainly been achieved with
distributed and scalable reinforcement learning using actor-
critic methods. However, most existing results focus not
on real-world problems but on video game environments
[1, 11].

Of the techniques that have been used to train au-
tonomous driving policies, the closest to our work is Imi-
tation Is Not Enough [9] which also uses a combination of
imitation learning (IL) and RL to train strong driving poli-
cies on a large dataset of real-world driving scenarios. That
work established two fundamental driving metrics (failure
rate and progress ratio) and provides a detailed description
of the mining process of their evaluation dataset. The pre-
sented policies are state of the art (SOTA) and we will com-
pare our best policy to theirs. Other work focuses on real-
istic traffic simulation [13], but also trains policies with a
combined IL and RL approach. However, their datasets are
approximately 3 orders of magnitude smaller than ours and
focus on highway driving, which does not pose as complex
challenges as the dense urban driving we focus on. Imita-
tion learning approaches in open loop [3, 12, 14] and closed
loop [2, 8] have also been proposed for autonomous driv-
ing. As [9] argue, IL approaches lack explicit knowledge of
unsafe driving and can respond inappropriate in rare, long
tail scenarios.

3. Large scale RL for autonomous driving
The challenges of using large scale reinforcement learning
for autonomous driving are manifold. To achieve scale, the
real-world problem must be modeled by a simulator, which
requires creating realistic traffic scenes and modeling the
interactions between different dynamic agents. The simu-



lator must be sufficiently efficient to generate environment
interactions on the order of billions of steps in reasonable
time and computational cost. Finally, a distributed learning
architecture must be identified that can learn efficiently and
scalably. Learners and simulation actors must be created
across many machines, each leveraging parallel hardware,
i.e. GPUs.

3.1. Scene generation and agent interactions

There are different ways of creating traffic scenes for sim-
ulation. Simulations scenarios can be generated entirely
synthetically, including the placement of roads, agents, and
traffic signals, for example as in the Carla simulator [4].
While entirely synthetic simulation gives very fine grained
control over training scenario distribution, this approach
raises the challenge of identifying what that scenario distri-
bution should be, and how best to sample training instances
from it. A different approach is to create scenes based on
real-world data recorded from vehicles equipped with sen-
sors, such as cameras and lidar sensors, driving on public
roads. From the recorded sensor data, a 3D-scene can be
created that contains, for example, the observed traffic light
states and challenging obstacles, such as pedestrians, cy-
clists, and cars [6]. In this work, we use scenarios that have
been created from real-world driving, for the fidelity of their
representation of the real world.

3.2. Accelerated autonomous driving simulator

Because our ultimate goal is to run reinforcement learning
experiments with billions of agent steps, the simulator must
be very efficient. This can be achieved by running the simu-
lation on accelerated hardware, such as GPUs. The parallel
computing power of accelerated hardware can lead to mas-
sive speed ups compared to CPUs. However, challenges
regarding the simulation data structures and control flow
need to be addressed to enable large scale parallelism. In
particular, all data need to be of the same size and no log-
ical branches depending on the values of the data can be
introduced.

3.2.1 Preparing data for parallel execution

A traffic scene can be described by data that changes over
time (dynamic data) and data that is constant throughout
the scenario (static data). An example of dynamic data are
the agents in the scene — the number of agents can change
during a scenario as well as between scenarios. An example
for static data are the road segments, which do not change
within a scenario but change across scenarios as different
locations require different roads. Furthermore, the number
of time steps per scene can vary.

Data segments of different sizes are not suitable for par-
allel execution on hardware accelerators. To overcome this

issue, a common maximum size for each type of data is de-
fined. All data elements in the dynamic data are then padded
to the defined maximum size for each time step.

3.2.2 The accelerated simulation utilizing JAX

Conceptually, the simulation can be divided into a phase
of action generation and a phase of advancing the environ-
ment state by applying the selected actions to the active
agent and updating all other agent positions based on the
logged trajectories. From the updated environment state
including the recorded data, the required observations can
be retrieved and used in the next step of action generation
from the learning system as described in Section 3.4. The
action generation is well-suited for batched inference, so
the primary challenge in simulating on parallel hardware is
to implement the environment update function to process
batched data in parallel. We used the JAX library to rewrite
the update function, so it can be jit-compiled and executed
on batches on the GPU. Finally, to maximize the simula-
tion speed, we combine the batched environment call with
the batched model call and scan along the time axis of the
dynamic data via the jax.lax.scan primitive. The entire sim-
ulation is then jit-compiled into a single graph and run in
XLA.

3.2.3 Simulator performance benchmark

To demonstrate the performance of our simulator, we com-
pare the environment step time with Waymax [6], which is
closest to our work. Table 1 reports the step time for dif-
ferent batch sizes on Nvidia v100 GPUs, showing that our
simulator runs slightly faster.

3.3. RL problem formulation

For our reinforcement learning approach we need to specify
how we retrieve the model inputs (observations) from the
state s and how we generate the physical actions from the
model outputs. The state s is the state of the simulation
described previously, i.e., agents, roads, traffic lights etc.
We also need to define the rewards, so the simulated data
can be used to calculate the parameter update from an RL
method.

Table 1. Runtime comparison for different batch sizes (BS) be-
tween Waymax [6] and our simulator for one controlled agent.

Step time [ms]
Simulator Device BS 1 BS 16

Waymax v100 0.75 2.48
Ours v100 0.52 0.82



3.3.1 Observation space

The observation space retrieves a subset of the information
of the environment state and transforms the fields of the ob-
servation vector into an agent-centric coordinate frame.

3.3.2 Action space

Our model directly controls the longitudinal acceleration as
well as the steering angle rate. Using these controls guaran-
tees that the associated dynamic constraints are not violated.
We are using discrete actions, which we found to be more
stable than continuous actions during reinforcement learn-
ing training.

3.3.3 Rewards

The goal of the policy is to navigate safely through traf-
fic. In particular, the agent should make progress along the
desired route while not colliding with other agents and ad-
hering to basic traffic rules. In order to achieve this, we
introduce dense rewards as well as done signals that are as-
sociated with sparse rewards.

Done signals have been introduced for collisions, off-
route driving, as well as running red lights and stop lines
and are associated with high negative rewards. Dense re-
wards are introduced for the progress along the planned
route (positive), velocity above the speed limit, as well as
on the squared lateral and longitudinal acceleration (all neg-
ative).

3.4. Distributed learning system

We can now establish the reinforcement learning approach.
Our base reinforcement learner uses actor-critic Proximal
Policy Optimization (PPO) [10]. However, to achieve scale,
we set up an asynchronous reinforcement learning system
similar to Dota2 [1]. The asynchronous setting allows to
run the learners and actors independently avoiding any slow
down. This in turn causes the data to be off-policy. We ad-
dress this challenge for actor-critic methods by using the V-
trace off-policy correction algorithm [5]. Furthermore, we
pre-train a policy via behavioral cloning, similar to AlphaS-
tar [11] because a good initial policy can speed up the RL
training. However, only pre-training the policy and not the
value network poses challenges to the stability at the start
of RL training. Therefore, we use the discounted return of
the expert trajectories as the value target. We calculate the
discounted return by replaying the expert trajectories in our
simulator and assigning the defined RL rewards.

4. Evaluation
This section describes the different metrics and the dataset
used for policy evaluation and comparison.

4.1. Metrics

The goal of the metrics are to measure the quality of the
trained policy. This is already a complex problem for au-
tonomous driving as the quality of driving comprises many
different aspects. For the scope of this paper, we follow the
work of [9] who introduced the failure rate and progress ra-
tio as relevant metrics for autonomous driving. The failure
rate measures the fundamental safety of the policy. If the
agent collides or drives off-road in the simulation the sce-
nario is considered as failed. The progress ratio is the dis-
tance traveled by the agent in the simulation divided by the
distance traveled of the vehicle in the original log. When
the agent travels the same distance as the vehicle in the log,
this metric becomes 100 %.

In addition to collisions and off-route failures, we also
implemented metrics for stop line and traffic light viola-
tions. We did not include these violations in the failure
rate to maintain consistency with previously reported re-
sults. However, we do report these metrics in Table 2.

4.2. Dataset

As the current state-of-the-art policies [9] are evaluated on
proprietary datasets, our goal was to achieve the fairest
comparison by following the same dataset mining proce-
dure. A dataset of 10k randomly sampled 10 s segments was
created using data collected from human-expert driving in
San Francisco. This is comparable to the ”All” evaluation
dataset in [9].

5. Experiments
Combining the real-world driving simulator, the scalable re-
inforcement learning framework and the described evalua-
tion metrics and dataset, we conduct experiments with dif-
ferent training dataset and model sizes. For all these exper-
iments we keep the hyperparameters the same. In particu-
lar we run our experiments for larger models across more
GPUs to achieve the same batch size.

We mined three different training datasets of 600 h, 2000
h and 6000 h from human-expert driving in San Francisco.
We also created three different model sizes of 0.75M, 2.5M
and 25M parameters by increasing the attention dimensions
of the network. Each model is trained first by behavior
cloning for 20 epochs on the given dataset. The pre-trained
policy is then refined by reinforcement learning on 2.5B
agent steps. We evaluate the policy during reinforcement
learning every 20M agent steps and after training select the
checkpoint with the lowest failure rate on the evaluation
dataset.

We conduct experiments on all combinations of model
size and dataset size, with the exception of the small 600 h
dataset in combination with the large 25M parameter model.
Figure 1a shows that increasing the dataset size improves
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Figure 1. Results for experiments with different model sizes (rows) and dataset sizes (columns). Colors represent the numerical results on
color scales. (a) The performance of the policy improves with increasing model and dataset size. (b) The model size is the major driver of
the required GPU time and therefore cost of training. Dataset size has no effect on the training time, but it can affect one time costs during
data preprocessing which is not considered here.

the performance of the trained policy in terms of failure
rate. Increasing the model size in general also improves
the policy performance. The 2.5M model is strictly better
than the 0.75M model and the best policy is trained on the
25M model. However, we observe that increasing the model
size only helps when sufficient real-world driving data is
available. On the 2000 h dataset the 25M performs worse
than the 2.5M model and only on the 6000 h dataset it per-
forms better. The largest experiment achieves a failure rate
of 0.88%.

In Table 2 we compare the policy performance of our
largest setting after behavioral cloning and after reinforce-
ment learning training with the current SOTA [9]. Our be-
havioral cloning policy performs quite poorly, achieving a
failure rate of 19.85 %. This is much higher than the pure
BC failure rate of 3.64 % reported in the current SOTA [9].

The reinforcement learning training improves the policy
and achieves a failure rate of 0.88 % and a progress ratio of
120.8 %. Compared to the best policy of the current SOTA
on a similar dataset, the failure rate is reduced by 64% and
the progress ratio improved by 25%.

6. Conclusions

In this paper we combined an efficient and realistic au-
tonomous driving simulator with a scalable reinforcement
learning framework. This allowed us to run large scale
reinforcement learning experiments training on billions of
agents steps with increasing model size on different dataset
sizes of real-world driving.

Our data shows that we can obtain similar scaling be-
havior as in other reinforcement learning settings [7] when
using increasingly large datasets of real-world driving. In
particular, we were able to obtain better policies with larger
models when using sufficiently large datasets. Our best pol-
icy reduces the failure rate compared to the current SOTA
[9] by 64% while improving progress by 25%. These re-
sults are very encouraging, and motivate further experi-
ments with increasing size. However, to ultimately answer
whether the presented approach can be scaled beyond hu-
man performance a validation framework that can reliably
compare the safety of the policy to human drivers is also
required.

Table 2. Comparison of our policies with the current SOTA [9].

BC [9]
MGAIL [9]

SAC [9]
BC+SAC [9]

Our BC
Our BC+PPO

Failure Rate [%] [9] 3.64 2.45 5.60 2.81 19.85 0.88
Progress Ratio [%] [9] 98.1 96.6 71.1 87.6 96.91 120.8

Collisions [%] - - - - 10.32 0.46
Off-Route Events [%] - - - - 10.35 0.49
Stop Line Violations [%] - - - - 2.47 0.02
Traffic Light Violations [%] - - - - 2.08 0.28
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7. Roads observations
The implemented roads library in our simulator delivers im-
portant information for our rewards and observations. For
example, it can calculate the distance to the next stop line.
We also use it to create observations of the route and the
nearby road segments. This is illustrated in Figure 2.

(a) Route border points of all drivable lanes. Only one lane is a
valid connection for the right turn the agent is performing. Before
and after the turn, other lanes are also valid.

(b) Road network points visualized by poly-lines. The color de-
pends on the properties of the annotation, for example the stop
line being visualized in red and bike lane boundaries in green.

Figure 2. Route and road network observations obtained from the
roads library.

8. Metric validation
We validated the collision and off-route detection by taking
25 positive and 25 negative samples for each metric from
the validation dataset. These have been inspected by human
triagers to confirm whether the metric is correct. For the
collision and the off-route detection this validation found
that all 50 scenarios for each metric were labeled correctly

according to our definition. However, overall both metrics
were found to be conservative, leading potentially to higher
failure rates.

For the collision-free metric a bounding box approximat-
ing the vehicle is checked against the bounding box of other
vehicles. As the bounding box includes all parts of the ve-
hicle, for example the mirrors and sensors, checking colli-
sions against the bounding box is conservative. Figure 3a
illustrates this conservative check.

In many situations the permissible lane along the route
is overly restrictive leading to off-route events. This oc-
curs particularly in junctions (Figure 3b) and lane merges or
branches (Figure 3c). Human expert drivers were found to
not exactly follow these lane geometries either. Future work
to relax the conditions in these cases to the entire drivable
surface is required. On top of that, the check is also on the
conservative side due to the increased bounding box size.

9. Framework scalability
When scaling experiments to more GPUs it is important that
the policy performance is not affected and that the overall
runtime is reduced. Ideally, the reduction in runtime is in-
versely proportional to the number of GPUs used, so the
overall GPU time and, therefore, the cost to run the exper-
iment stays the same. Table 3 shows the results for experi-
ments running on 8, 16, and 32 machines. The overall pol-
icy performance is very similar and the differences can be
considered noise. The overall GPU time sees a marginal
uptick. We calculated the normalized GPU time by divid-
ing the total GPU time by the total GPU time of the 8-GPU
experiment. As the numbers are close to 1, the framework
scales almost perfectly.

Table 3. Runtime and policy performance metrics for experiments
running on different numbers of GPUs. The policy performance is
very similar, but the runtime goes down as expected.

Number of GPUs 8 16 32

Runtime [h] 41.58 21.94 11.99
Total GPU time [h] 332.6 351.0 383.7
Normalized GPU time 1 1.05 1.15
Failure Rate 1.28 1.25 1.45

10. Ablation of SL pre-training
For this ablation we removed the SL pre-training in order to
understand the effectiveness of this step. We used the large



(a) Detected collision with agent 85753 be-
cause of the conservative bounding box check.

(b) Overly restrictive lane permissibility in a
junction. Off-route event detected due to in-
creased bounding box size.

(c) Overly restrictive lane permissibility on a
road segment with branching lanes.

Figure 3. Examples of conservative detection of collisions and off-route events.

6000 h dataset, the 2.5M model and again trained on 2.5B
agent steps.

Even without the SL pre-training the agent can learn to
make progress and reduce the failure rate over the course
of training as depicted in Figure 4. However, after 2.5B
agent steps the policy without pre-training is still at about 2
% failure rate, which the pre-trained policy reached already
after 0.5B steps. Also the failure rate at 2.5B agent steps is
lower for the policy that has been pre-trained. The increased
training speed is also observed for the progress ratio. The
pre-trained policy reaches values around 120 % after 0.5B
steps and the policy without pre-training catches up to that
value at around 2.5B steps. These results overall confirm
the effectiveness of the pre-training step in terms of speed.
Pre-training also helps to reach better final performance in
terms of safety.

11. Hyperparameters
Table 4 shows the most important hyperparameters for both
the behavioral cloning stage and the reinforcement learning
stage.

Table 4. BC and RL Hyperparameters

BC RL

Batch size 32768 512
Sequence length - 32
Learning rate 2 ∗ 10−3 5.6 ∗ 10−5

PPO clip param - 0.3
Value loss scaling 10−4 10−2

PPO entropy coefficient - 3 ∗ 10−2
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Figure 4. Training curves for experiments with and without the SL pre-training on the 2.5M parameter model and the 6000 h dataset.
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