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Abstract

Evaluating the performance of autonomous vehicle plan-
ning algorithms necessitates simulating long-tail safety-
critical traffic scenarios. However, traditional methods for
generating such scenarios often fall short in terms of con-
trollability and realism, and neglect the dynamics of agent
interactions. To mitigate these limitations, we introduce
SAFE-SIM, a novel diffusion-based controllable closed-loop
safety-critical simulation framework. Our approach yields
two distinct advantages: 1) the generation of realistic long-
tail safety-critical scenarios that closely emulate real-world
conditions, and 2) enhanced controllability, enabling more
comprehensive and interactive evaluations. We develop a
novel approach to simulate safety-critical scenarios through
an adversarial term in the denoising process, which allows
an adversarial agent to challenge a planner with plausible
maneuvers, while all agents in the scene exhibit reactive and
realistic behaviors. Furthermore, we propose novel guid-
ance objectives and a partial diffusion process that enables
a user to control key aspects of the generated scenarios such
as the collision type and aggressiveness of the adversarial
driver while maintaining the realism of the behavior. We val-
idate our framework empirically using the NuScenes dataset,
demonstrating improvements in both realism and controlla-
bility. These findings affirm that diffusion models provide
a robust and versatile foundation for safety-critical, inter-
active traffic simulation, extending their utility across the
broader landscape of autonomous driving.

1. Introduction

A key safety feature of autonomous vehicles (AVs) is their
ability to navigate near-collision events in real-world scenar-
ios. However, these events rarely occur on roads and testing
AVs in such high-risk situations on public roads is unsafe.
Therefore, simulation is indispensable in the development
and assessment of AVs, providing a safe and reliable means
to study their safety and dependability.

Recent studies have primarily created static scenarios that
challenge planners, neglecting dynamic, closed-loop sim-

Table 1. Comparison of methods. Our contribution is the devel-
opment of a framework for (a) safety-critical (b) closed-loop (c)
controllable adversarial simulations. These aspects are not concur-
rently present in previous frameworks. We are the first to enable
an ego planner to be tested against controllable adversaries with
varied behavior patterns.

Method Safety-
Critical Controllable Controllable

Adversary
Evaluate
Planner

Closed-
Loop

Real-
World

CTG [1] × ✓ × × ✓ ✓
CTG++ [2] × ✓ × × ✓ ✓
STRIVE [3] ✓ × × ✓ ✓ ✓
DiffScene [4] ✓ ✓ × ✓ × ×
SAFE-SIM (Ours) ✓ ✓ ✓ ✓ ✓ ✓

ulations. This oversight fails to account for the adaptive
responses of other agents, crucial for detailed safety evalu-
ations. Additionally, such simulations lack controllability,
limiting the exploration to a single adversarial outcome per
scenario.

In this work, we introduce SAFE-SIM, a closed-loop sim-
ulation framework for generating safety-critical scenarios,
with a particular emphasis on controllability and realism
for the behavior of agents, which allows simulations over a
long-horizon as needed to evaluate AV planning algorithms
(Fig. 1). Different from prior works [1–4] that primarily
adhere to rule-constraint satisfaction, our approach enhances
controllability by modulating adversarial vehicle behaviors
within identical scenarios, thereby facilitating a broader ex-
ploration of potential outcomes. See Tab. 1 for a comprehen-
sive comparison of these approaches.

Our approach builds upon recent developments in con-
trollable diffusion models [1, 5, 6]. Specifically, we adopt
a test-time guidance to direct the denoising phase of the
diffusion process, using the gradients from differentiable
objectives to enhance scenario generation, enabling genera-
tion of adversarial scenarios in which and adversarial agent
collides with the ego agent behaving according to specific
planning policy. Additionally, we develop an novel approach,
which we refer to as Partial Diffusion that introduces trajec-
tory proposals into the diffusion process to provide a high
degree of controllability over the type of collision scenario.



Figure 1. Overview of Controllable Safety-Critical Closed-Loop
Simulation Framework. This framework involves evaluating a
planner within scenarios featuring multiple reactive agents. These
agents possess two distinct qualities: they are trained using real-
world driving data, ensuring realistic behavior, and their actions are
controllable particularly their adversarial behavior.

Overall, our balanced integration of adversarial objectives
with regularization during the guidance phase combined with
Partial Diffusion allows for refined control over the condi-
tions of the generated scenarios, ensuring both their realism
and relevance to safety-critical testing.

In our study, we conduct experiments on the nuScenes
dataset [7]. Our results demonstrate a marked improvement
in the controllability and realism of scenarios compared to
traditional adversarial scenario generation methods. Further-
more, we showcase the advantage of our proposed methods
in controlling variations of adversarial behavior to test AV
planners. These attributes make our approach particularly
well-suited for the closed-loop simulation of AVs, providing
a more reliable and comprehensive framework for safety
evaluation.

2. Problem Formulation

We consider a simulated interactive traffic scenario consist-
ing of N agents; one is the ego vehicle controlled by the
planner π, and the remaining N − 1 are reactive agents
modeled by a function g. Our objective is to create a
safety-critical closed-loop collision simulation, where re-
active agents demonstrate realistic, controllable behavior.
Of the N − 1 reactive agents, one is considered the adver-
sarial agent (denoted as agent a) meant to collide with the
adversarial agent.

The adversarial agent, formulated within the reactive
agent model g, is governed by an adversarial term designed
(detailed in Sec. 4) to be both controllable and adversarial
to the planner π. This setup allows the adversarial agent
to pose direct challenges to π, testing its resilience in com-
plex scenarios. The dual role of the adversarial agent and
non-adversarial agents ensures that while it challenges π,
the overall simulation environment plausibly represents real-

world driving conditions.

At any given timestep t, the states of the N vehi-
cles are represented as st = [s1t , . . . , s
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of vehicle i. The corresponding actions for each vehicle
are at = [a1t , . . . ,a
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acceleration and yaw rate. To predict the state at the next
timestep t+ 1, a transition function f is used, which com-
putes st+1 = f(st,at) based on current state and action. We
adopt unicycle dynamics as the transition function.

Each agent’s decision context is cit, which includes
the agent-centric map Ii and the Thist historical states of
neighboring vehicles from time t − Thist to t, defined as
st−Thist:t = {st−Thist , . . . , st}. In closed-loop traffic simu-
lation, each agent continuously generates and updates its
trajectory based on the current decision context cit. After gen-
erating a trajectory, the simulation executes the first few steps
of the planned actions before updating cit and re-planning.

Planner π : The planner π determines the ego vehicle’s
future trajectory over a time horizon t to t+ T . The planned
state sequence is denoted by s1t:t+T = π(c1t ), where π(c1t )
processes the historical states and map data within c1t to plan
future states based on the current scene context.

Reactive Agents g : The reactive agent model g, parame-
terized by θ, is designed to simulate the behavior of theN−1
non-ego vehicles, represented by the set {sit:t+T }Ni=2. Each
vehicle’s state sequence, sit:t+T , is generated by gθ(cit, ψi),
which incorporates the decision context cit and a set of con-
trol parameters ψi unique to each agent. These parameters
ψi enable the fine-tuning of individual behaviors within the
simulation. In our approach, we train the model g on real-
world driving data to ensure the trajectories it produces are
not only controllable, supporting the generation of various
safety-critical scenarios, but also realistic.

3. Diffusion Models for Traffic Simulation

For closed-loop safety-critical traffic simulation, the reactive
agents, especially the adversarial agent, should be 1) control-
lable, and 2) realistic. With recent advances in controllable
diffusion models [1, 5, 6], we adopt trajectory diffusion
models to generate realistic simulations.

We define the model’s operational trajectory as τ , which
comprises both action and state sequences: τ := [τa, τs].
Specifically, τa := [a0, . . . , aT−1] represents the sequence
of actions, while τs := [s1, . . . , sT ] denotes the correspond-
ing sequence of states. Following the approach described in
[1], our model predicts the action sequence τa, and the state
sequence τs can be derived starting from the initial state s0
and dynamic model f .



Figure 2. Guided Diffusion Process for the Adversarial Agent.
This process optimizes the adversarial agent’s trajectory using the
adversarial cost function Jadv in relation to the ego vehicle. Si-
multaneously, it applies regularization through Jreg for maintaining
realism.

4. Diffusion Models for Safety-Critical Traffic
Simulation

The diffusion model, once trained on realistic trajectory
data, inherently reflects the behavioral patterns present in
its training distribution. However, to effectively simulate
and analyze safety-critical scenarios, there is a crucial need
for a mechanism that allows for the controlled manipulation
of agent behaviors [1, 5]. This is particularly important
for generating adversarial behaviors and ensuring long-term
scene consistency in simulations.

4.1. Guiding Reactive Agents

Our approach specifically introduces guidance to the sam-
pled trajectories at each denoising step, aligning them with
predefined objectives J(τ). The concept of guidance in-
volves using the gradient of J to subtly perturb the predicted
mean of the model at each denoising step [8][6]:

τ̃0 = τ̂0 − αΣk∇τkJ(τ̂0) (1)

In practice, diversifying the behavior of adversarial agents
within the same scenarios is crucial for a thorough assess-
ment of AVs. Despite the significance of this challenge, it
remains largely unexplored in previous works [1][3].

The loss function for the non-reactive agents, J(τ), con-
sists of a collision term Jcoll, which encourages collisions
between the adversarial agent and the ego agent, two con-
trol terms Jv and Jttc, which control the relative speed and
time-to-collision between the ego and adversarial agent re-
spectively, a regularization term JGauss, which discourages
collisions between the reactive agents, and a route guidance
term Jroute, which discourages the reactive agents from going
outside the road:

J(τ) = ρ (Jcoll + Jv + Jttc)︸ ︷︷ ︸
Jadv(τ)

+ Jroute + JGauss︸ ︷︷ ︸
Jreg(τ)

, (2)

Figure 3. Framework for Partial Diffusion.

where ρ denotes a scalar weight that determines whether a
reactive agent behaves adversarially towards the ego agent,
i.e., whether it attempts to collide with the ego agent.

Safety Criticality of Collisions: We control the relative
speed Jv between the ego and adversary at each time step
(v1t and vat ) and the time-to-collision (TTC) cost Jttc [9] to
control the safety criticality of potential collisions, with the
latter given by:

Jttc =

T∑
t=1

− exp

(
−
t̃2col(t)

2λt
−
d̃2col(t)

2λd

)
, (3)

where t̃col(t) is the time to collision at time t, d̃col(t) is the
distance to collision and λt and λd are bandwidth parameters
for time and distance. This formula uses a constant velocity
assumption. Intuitively, The time-to-collision cost favors
scenarios with high relative speeds and challenging collision
angles for the ego vehicle to avoid. For a detailed explanation
of Jttc, see supplementary.

4.2. Partial Diffusion: Controlling Collision Types

We introduce a novel approach through a partial diffusion
process, utilizing trajectory proposals to initiate the diffusion
process. This methodology enables the variation in collision
types by the adversarial agent within the diffusion, tailoring
the adversarial outcomes to specific evaluation needs, the
results are discussed in Sec. 5.2.

Figure 3 illustrates our framework, which is divided into
three main steps to generate trajectory proposals for various
collision scenarios. First, we create initial trajectory propos-
als (τ0) aimed at capturing different types of collisions. The
next critical step involves setting the partial diffusion ratio γ,
which defines the specific point in the process, kp = γ ·K,
at which we start modifying the trajectory. Starting from
step kp, we adjust the trajectory by adding a precise level of
Gaussian noise ϵ ∼ N(0, I): τ̂kp

=
√
ᾱkp

τ0 +
√
1− ᾱkp

ϵ.
The final stages include removing noise and using guided
diffusion for the rest of the kp steps to refine the trajectory
into a realistic path that suits our collision scenario goals.

To generate the trajectory proposals, we develop a rule-
based approach in which we first identify the centerlines of
the ego and adversarial agent and then search for potential



Figure 4. Qualitative Results of Controllability of Partial Diffu-
sion. The depicted safety-critical scenarios demonstrate the frame-
work’s capability to generate controllable adversarial behavior for
comprehensive planner assessment.

Method Collision Other Adv Collision Realism TimeOffroad Offroad Rel Speed
(%) ↑ (%) ↓ (%) ↓ (m/s) ↓ ↓ (s) ↓

STRIVE 36.4 2.2 11.4 5.52 0.85 427.2 ± 169.8
SAFE-SIM 43.2 1.9 11.4 -0.12 0.38 104.5 ± 17.7

Table 2. Safety-critical Traffic Simulation. We compare the our
approach against STRIVE [3] for safety-critical traffic simulation
with a rule-based planner. Our outperforms STRIVE on all metrics.

TTC Cost TTC Coll Speed Coll Angle Coll Rate Realism
Weight Cost (m/s) (deg) (%) ↑ ↓

0.0 0.18 2.45 -7.43 48.2 0.76
1.0 0.21 2.30 0.43 53.6 0.79
2.0 0.26 3.78 -17.0 60.7 0.81

Table 3. Controlling Time to Collision (TTC). The table shows
the impact of different TTC Cost weights on collision scenarios.
Increasing the TTC Cost weight results in an increase in collision
rate, suggesting a heightened challenge for the ego vehicle in avoid-
ing collisions.

intersections of their respective centerlines. This method
allows for precise control over the diffusion trajectory, en-
abling the creation of customized collision scenarios by ad-
versarial agents. Users can adjust γ to fine-tune the balance
between explicit control and the model’s inherent guidance,
thus enhancing the scope of evaluation for autonomous vehi-
cle technologies.

5. Experiments

We validate the efficacy of our proposed framework via ex-
periments employing real-world driving data on nuScenes
[10]. These experiments are conducted using a rule-based
planner, as delineated in [3]. The findings reveal that our
framework successfully induces controllable adversarial be-
havior in realistic safety-critical situations, a crucial aspect
for exhaustive testing of autonomous vehicles (AVs).

5.1. Evaluation of Safety-Critical Traffic Simulation

We initiated our evaluation by comparing our method with
STRIVE [3], recognized for its proficiency in generating
adversarial safety-critical scenarios using a learned traffic
model and adversarial optimization in the latent space. Our
comparison focused on the collision rates between the ego
and adversarial agents (”Collision”), the collision rates, the
off-road rate of the adversarial agent (”Adv Offroad”) and the
other agents (”Other Offroad”), the speed of the adversarial
vehicle (”Adv Speed”), the realism of the generated scenario
(”Realism”), as proposed in [1], and the simulation time
per scenario (”Time). The results are presented in Tab. 2.
Our method excels in all metrics, especially collisions and
realism.

5.2. Evaluation: Controlling Safety-Criticality and
Collision Types

Our method demonstrates enhanced controllability in gener-
ating adversarial scenarios compared to previous approaches.
Specifically, we focus on controlling two critical aspects:
time-to-collision before the interaction between the ego and
the adversarial vehicle and the collision types.

We manipulate the scenario’s safety-criticality by adjust-
ing the relative weight of the TTC cost. To assess the impact
of these adjustments, we measure the average TTC cost
shortly before a collision occurs (0.5 seconds). Our observa-
tions, detailed in Tab. 3, show that increasing the TTC weight
raises the TTC cost. Notably, while the relative collision
speed remains fairly consistent, the collision angle shifts,
indicating a higher difficulty in avoiding ego-adversary colli-
sions. Based on qualitative examples in the supplementary
material, these changing angles could potentially lead to
more challenging cases for the ego vehicle, thereby enhanc-
ing the safety-critical aspect of the simulation.

As shown in Fig. 4, we demonstrates how our proposed
partial diffusion process can generate a variety of collision
types by different trajectory proposals. For more qualitative
results, please see the supplementary materials.

6. Conclusion

In this work, we present a closed-loop simulation framework
that employs guided diffusion models and partial diffusion
for generating diverse, safety-critical scenarios to evaluate
AV algorithms. A key aspect of our method lies in its ability
to vary the types of adversarial behavior within collision
scenarios. By integrating adversarial objectives and partial
diffusion into the diffusion model’s architecture, we achieve
detailed control over the spectrum of adversarial actions.
This versatility enables our framework to produce a broader
range of realistic and manageable scenarios, setting a new
standard in adversarial scenario generation beyond the limi-
tations of existing approaches.
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