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Abstract— High-definition road maps play a crucial role in
the functionality and verification of highly automated driving
functions. These contain precise information about the road
network, geometry, condition, as well as traffic signs. Despite
their importance for the development and evaluation of driving
functions, the generation of high-definition maps is still an
ongoing research topic. While previous work in this area has
primarily focused on the accuracy of road geometry, we present
a novel approach for automated large-scale map generation for
use in industrial applications. Our proposed method leverages a
minimal number of external information about the road to pro-
cess LiDAR data in segments. These segments are subsequently
combined, enabling a flexible and scalable process that achieves
high-definition accuracy. Additionally, we showcase the use of
the resulting OpenDRIVE in driving function simulation.

I. INTRODUCTION

The introduction of Advanced Driver Assistance Systems
(ADAS) has brought a significant shift in the automotive in-
dustry, particularly in the development of automated driving
(AD) functions that achieve SAE Level 3 and above. These
systems have become increasingly complex, by combining
the hardware / software systems capable of operating under
these conditions, as well as an expanded operational design
domain (ODD). Further, the functional safety and the safety
of the intended functionality (SOTIF) must be ensured across
a growing number of traffic situations. These shifts imply the
need for higher requirements on test and evaluation of these
functions, where more and more test kilometers are needed.
Based on the average driven kilometers between two fatal
accidents on German highways, Wachenfeld et al. [1] esti-
mate this number to be 6.61 billion kilometers. With these
prerequisites, real-world test drives are no longer feasible,
and the adoption of simulation-based safety evaluation is
critical for the success of AD functions. As a consequence
also the realism and accuracy of simulations have to be
enhanced and derived from the real world. High-definition
(HD) maps of the road are considered an integral part of
every simulation, aside from their use in AD functions [2].
Albeit their importance in functions and simulations, their
creation, especially on a large scale, is still an open research
topic. To model roads as a basis for AD simulation, the
approaches can be divided into four different categories [3]:
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Fig. 1. Representation of the output of our proposal. On the top the
camera view of the ego vehicle. At the bottom, the resulting OpenDRIVE
and OpenScenario files of our method, displayed in esmini [4].

First, the simple conversion of different standard-
definition (SD) map sources or aerial images into the re-
spective format needed for simulation.

Second, the generation of HD maps from mobile map-
ping platforms. Mobile mapping platforms hereby describe
vehicles fitted with a high number of sensors to collect
detailed environmental information. Commonly, these plat-
forms employ a combination of Global Navigation Satellite
System (GNSS), Inertial Measurement Unit (IMU), and
Light Detection and Ranging (LiDAR) sensors.

Third, the fusion of SD information with mobile mapping
to reduce shortcomings of the individual methodologies [3].

Lastly, especially in automotive simulation, HD maps are
often created by specialized service providers, for example
in [5]–[7]. However, given that these providers operate
commercially, their methods and the level of automation are
not publicly available. Consequently, they are not examined
within the scope of this work.

In the field of automotive simulation, the choice of a map
source is use case dependent [8]. As described by Eisemann
et al. [8], for a comprehensive traffic scenario extraction,
trajectory and map data need to be referenced to one another,
ideally created jointly to minimize measurement offsets. This
focuses on the use of mobile mapping data since these
platforms allow a flexible acquisition.

Nevertheless, research on HD map generation from mobile
mapping platforms is limited. Existing studies often depend
on specific sensor setups and mounting positions [9]. This
results in high costs for equipment, sensors, and workforce
for the setup and maintenance of these platforms. Further,
the presented methods are focused on the accuracy of the
results rather than the large-scale acquisition. Considering



that simulations should provide a comprehensive evaluation
of the function under test, it is crucial for maps to offer
extensive coverage and capture the variety of the world. This
highlights the need for further research in the field of large-
scale map generation.

In this paper, we therefore propose a generic approach
for HD map generation incorporating the aforementioned
aspects. One exemplary scene is presented in Fig.1.

We aim to provide a scalable approach, capable of han-
dling multiple hundred kilometers of drive data, with mini-
mal reliance on external information. Further, our methodol-
ogy, described in Sec. III, focuses on utilizing sparse LiDAR
data obtained from research vehicles, enabling a more cost-
effective acquisition process. In comparison, the current
state-of-the-art approaches are constrained by specific sensor
setups and have only reached several hundred meters in
length, as presented in Sec. II. In Sec.IV, we demonstrate
that our proposed approach achieves HD map accuracy
and we showcase the quality through a trajectory-based
simulation derived from the original test drive.

II. BACKGROUND

The following section reviews existing mapping ap-
proaches and introduces the map standard used in this work.

A. Related Work

Current research in the generation of HD maps is primar-
ily concerned with developing methods for mapping the local
surroundings of the vehicle [10]. These extensively studied
the use of machine learning based bird’s eye view sensor
fusion [11], road network graph detection by transformer
networks [12], or hierarchical query embedding transformers
[13]. Albeit their impressive results, these methods intro-
duce multiple limitations for industrial applications. Since
machine learning models build the basis of these methods,
they also introduce associated requirements, like available
training data, the resulting domain gap, and challenges
such as catastrophic forgetting [14]. Moreover, the results
presented by these methods are often in the form of plots
or vectors, rather than a standardized map format [10]–
[13]. Since the map format has a significant impact on the
processing, these methods are not further examined.

Research on the export of a standardized HD map format
is relatively sparse [3]. Chiang et al. [15] present an approach
for exporting OpenDRIVE, by using the trajectory of the
ego vehicle with an installed ground-facing laser scanner.
Using extracted road edges, lane marking classification, and
trajectory information the authors employ a multistage re-
construction process for the reconstruction of road geometry.

A specialized approach for the extraction of traffic scenar-
ios is shown by Karunakaran et al. [16]. The data used in this
study was obtained from a vehicle equipped with six LiDAR
sensors and an additional ground-facing LiDAR. By taking
advantage of the line-wise LiDAR scanning pattern, the
authors filter out lane markings which are transformed into
Lanelet2 format and subsequently converted to OpenDRIVE.

Focusing on the independence from external data and the
use of sparse LiDAR data, we introduced a method for the

automated OpenDRIVE and OpenSCENARIO generation in
[9]. The algorithm involves reflectivity-based lane marking
extraction, 3D lane line generation, and estimation of the
reference line without relying on the prior road information.

Although these methods achieve a standardized map
format, the reliance on special sensor characteristics [16]
or mounting positions [15] hinder the adaption of these
methodologies. Moreover, generating OpenDRIVE geometry
as one consecutive road, as presented in our previous work
[9], can lead to errors in large-scale road reconstruction.

Our motivation is to achieve a precise road representation,
achieving HD map quality, without a vast number of sensors,
multi-sensor fusion, or machine learning. In addition, we
aim for a scalable process, capable of handling multiple
hundred kilometers of road network. Therefore, we focus on
the parallel execution of process steps, the limited impact of
reconstruction errors on the overall map, and the possibility
of manual intervention.

Based on the aforementioned requirements, we base our
feature extraction on our previous research presented in [9].
This is due to the fact, that the approach has been demon-
strated to achieve stable HD map quality while utilizing only
sparse 72° field of view (FoV) LiDAR information.

B. Map Format

We select ASAM OpenDRIVE [17] as our targeted HD
map format. One of the main reasons is the wide-scale
adoption in the automotive industry and the integration into
tools and software platforms for virtual testing [8], [15].

OpenDRIVE describes the overall course of the road along
a reference line. Extended elements such as elevation, super-
elevation, and lanes are attached along this line. Inspired by
road planning and construction, a reference line can consist
of different geometric elements, namely line, spiral, arc, or
paramPoly3 (parametric cubic curves). One or more of these
geometries can be used or concatenated to mathematically
describe the detailed road structure.

Another critical element for the description of road net-
works is the relation between individual roads and lanes. In
OpenDRIVE, entry and exits of roads are described as in-
dividual junctions, where the predecessor/successor relation
between each lane is defined.

III. METHOD

As shown in Fig. 2, our proposal consists of multiple
processing steps, which are further described in the sub-
sequent sections. Since the core principle of our approach
is the division of LiDAR data into segments and fusion
with external information, Sec. III-A describes the initial
data used and the segmentation process. The subsequent
sections describe the processing steps performed on each
separate segment, which are then combined into the final
OpenDRIVE in Sec. III-H.

A. Data & Preprocessing

Similar to other approaches, we also adapt LiDAR data
for the extraction of accurate road information. With the
decreasing costs for LiDAR sensors over the last few years,



Fig. 2. General overview of our method. Real-world test drive data is split into segments, using OpenStreetMap information. LiDAR data is accumulated
and processed within each segment. By extracting lane markings and combining them with government regulations and OpenStreetMap data, the reference
line is estimated. The resulting geometric elements are compiled into a single OpenDRIVE file, where lane relations and junctions are also defined.

their integration into both research and production vehicles
has become more common. LiDAR sensors provide high
positional accuracy of detections, while the measured re-
flectivity allows easier detection of road markings.

For collecting accurate environment and traffic behavior
data, we make use of the JUPITER vehicle described by
Haselberger et al. [18]. The platform consists of a Porsche
Cayenne fitted with multiple Livox LiDARs and GeneSys
ADMA GNSS inertial system. To demonstrate the robustness
of our approach, we solely use the front-mounted Livox
LiDAR sensor, which possesses a complex and inhomoge-
neous scanning pattern. In contrast to previous work, the
data collection was not focused on road generation but on
the acquisition of critical driving scenarios as part of the
AVEAS [8] 1 research project. In order to record authentic
traffic behavior, data was collected mainly on the German
interstate highways A8 and A81 around Stuttgart at peak
traffic times. The speed profile of the recordings ranges from
80 to 140 km/h in the considered parts.

Throughout this work, we further leverage data from
the OpenStreetMap 2 (OSM) project as an external data
source. OSM is a crowd-sourced map platform that provides
comprehensive information about road networks, connec-
tions, and surroundings. Since our proposed method requires
minimal prior information for the processing, we only use
the following data from the OSM project:

• country of the recording
• type of road, e.g., highway, entry/exit
• number of lanes
• existence of shoulder lanes
• connection to exit or entry lanes

In parts of our segment generation process, we further
utilize the road segment description of OSM to identify road
sections with constant properties. This process is detailed in
the following section. We note that the listed information is
taken from OSM for ease of use and could also be derived
from other sources such as image processing.

1www.aveas.org
2www.openstreetmap.org

B. Segment Generation

Dividing the overall road extraction into segments serves
multiple purposes.

First, enabling the parallel processing of multiple seg-
ments. Especially as the extraction and analysis of LiDAR
data is a computationally intensive task, the distribution over
multiple workers, for example in a cloud environment, can
significantly reduce the overall generation time.

Second, in case of processing failures, only the specific
segment is affected and can be either dismissed or corrected.

Lastly, as some road geometry corner cases can be labor-
intensive to automate, a segment-based approach allows for
easier manual generation or correction of such cases.

For splitting up a real-world test drive into segments
we utilize the road geometry provided by OSM. OSM
describes roads as ways, which represent parts of a road
with constant attributes, e.g., number of lanes, and shoulder
lanes. Geometry and connection of a way is defined by
nodes. The overall course of the road is outlined by edges,
which are implicitly defined through the connection of the
nodes. Extracting these edges creates a representation of the
road network usable in map matching. For the segmentation
of our process, we choose the division into the individual
edges, since these represent the smallest building blocks of
the OSM road network.

We make use of the map matching framework introduced
by Meert et al. [19] to assign each timestep to the corre-
sponding edge. In contrast to the authors, matching is done
for each timestep individually, without leveraging a Hidden
Markov Model (HMM). The absence of HMM aims to pre-
vent failures in the case of insufficient observations resulting
in ambiguous solutions. We note, that our approach may
yield inconsistent results, such as mismatches on overpasses,
and is subject to further research.

For each edge, the OSM information detailed in Sec. III-
A is stored, together with LiDAR and GNSS data matched
to the specific edge. If a single recording drive passes an
edge multiple times, the respective timesteps are combined,
if the time difference is less than eight hours, assuming that
the course of the road is unchanged within one day.

Through the use of a unified data loading architecture, the
processing of the individual segments is independent of one
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another and can be parallelized, either over multiple cores
or multiple cloud workers.

The processing of each segment is highly inspired by our
previous work in [9], which has shown high stability in line
marking extraction with the use of sparse point clouds.

C. Line Marking Extraction

For each matched segment timestep, the corresponding
LiDAR and GNSS measurements are synchronized.

Following [9], we discard LiDAR points above the sensor
mounting position to reduce point cloud size. In addition, we
also crop the point cloud based on the maximum road width
derived from OSM lane information. As the ego vehicle’s
overall position on the road is unknown at this stage, the
possible maximum width is used on both sides of the ego
vehicle. Despite this high threshold value, results on our data
show a significant reduction of outliers, especially when the
ego vehicle is on the outermost lane of the road.

To retrieve the corresponding points belonging to the road
surface, we leverage a RANSAC [20]-based approach to
estimate the ground plane. To account for sloping roadsides,
all plane inliers, as well as points below the ground plane,
are taken into consideration for further processing steps.

The resulting filtered point clouds are transformed into
a unified segment coordinate system. Therefore, the global
ego transformation is estimated based on GNSS coordi-
nates and IMU rotation. Through a standardized transverse
Mercator projection, GNSS coordinates are transformed into
Euclidean space. We define the first global transformation as
the origin of the segment coordinate system, corresponding
to the vehicle coordinate system of the first timestep.

The extraction of the individual lane markings exploits
their higher reflectivity compared to the road surface. De-
pending on the condition or aging of the lane marking their
reflection is decreased. Therefore, our process first makes
use of a filter threshold of 25% to determine LiDAR returns
belonging to markings. If the subsequent processing is not
able to build clusters or find a consecutive lane marking,
the filtering is repeated with a 5% lowered threshold. Since
reflectivity-based filtering leads to considerable outliers, an
additional radius-based outlier reduction is performed [9].

D. Generation of Lane Marking

The evaluation of continuous lane markings is based on
the assumption that lane markings are arranged in a row
along the edges of each lane [21]. Further, the overall process
assumes that lane markings, dashed as well as solid, are
elongated in the direction of the lane and therefore in the
direction of the next marking [21]. As these considerations
are true in most non-crossing situations, see [21], we widely
adopt the lane generation process described in [9].

This consists of clustering the filtered lane marking points
to associate LiDAR returns to individual markings, enabling
the estimation of their direction on which consecutive mark-
ings are connected to build lane boundaries.

Given the unequal length and number of contained mark-
ings in each segment, DBSCAN [22] clustering is used.
The findings in [9] and further analysis of our data imply,

that solid lane markings can result in a single cluster over
the full length of the segment. These solid clusters contain
accurate information about the course of the road, even in-
between dashed markings. In addition, they provide reliable
information about the ego position on the road. To extract
this information for further processing, markings stretched
over a length of 12 m are split into 6 m parts, which
equals the size of a single dashed marking [21]. Since the
consecutive steps in Sec. III-E and Sec. III-F depend on lane
marking relations and classifications, clusters identified as
solid get assigned the corresponding class and connection.

Since the reconstruction of lane marking relation in point
clouds is a non-trivial task, related research, e.g., [15], [16],
leverages the ego trajectory. While these methods provide
stable results on consistent drives, they can yield mismatched
relations in the case of ego vehicle lane changes.

Utilizing the mentioned lane marking assumptions allows
deriving the lane marking relation without depending on
the ego trajectory. Therefore, we leverage the elongation
of the lane marking clusters to derive a directional vector
v̂∗. This is achieved by fitting a 3D line model through
each cluster by using a RANSAC-based estimation. In the
following step, an iterative search for the next lane marking
center pc is done, based on the estimated directional vectors.
As the directional vectors v̂∗ can contain high variations
and inaccuracies, originating from partial scans or occlusion,
further directional vectors v̂ are stabilized through matched
marking directions. If a marking center was already matched,
the directional vectors v̂ are calculated with γ = 0.5 as:

v̂i+1 = γ · v̂∗i + (1− γ) · v̂∗i-1 (1)

Based on the directional vector, the next expected lane
marking center pc is calculated through pc = v̂·d. To account
for offsets in the point cloud, on each pc a ball radius search
for the next marking center is done. Based on evaluations of
different data sets, we define the maximum search distance
dmax for d as 1.5 times the regulatory expected distance
between lane marking centers. To compensate for different
scanning mistakes and damaged markings, pc is calculated
iteratively by raising d in three-meter steps till dmax. At each
pc the ball radius search is executed with half the regulatory
lane width. If a marking center is found, it is set as a new
search point and connected to the current center. The search
continues as long as the next marking is found.

The resulting connections between lane markings create
an implicit model that partially or fully reassembles the
overall lane marking stripe.

To reduce wrong connections and higher stability against
high reflectivity outliers in the point cloud, all steps utilize
full 3D point cloud information, as described in [9].

E. Refinement of lane markings

To achieve a better analysis of the extracted and connected
lane markings, further refinement is done similar to the
previous Sec. III-D. By only taking into account starting
and endpoints of connected markings, higher thresholds
can be used to reduce partial connections of continuous



marking stripes. This further reduces the amount of partial
connections, especially when the ego vehicle changes lanes
multiple times within the segment.

To ensure correct ordering within each connected line,
markings are first sorted based on their distance to the
segment origin. On this basis, another iterative search is
started leveraging the method described in Sec. III-D. Using
the last two points of each connection, the search is executed
for dmax set as 3.5 times the regulatory expected distance
between lane marking centers. If a fitting starting point of
a connection is found, it is assumed to be part of the same
lane marking stripe and both connections are fused.

F. Classification of Lane Markings

Since the correct classification of the respective lane
marking types is a key part of our overall process, we
explain it in further detail. The aim of the classification is the
ability to match the detected lane markings with the number
of lanes provided by OSM in combination with regulatory
definitions, such as solid lanes on the outer edges of the road.
Therefore, our process currently focuses on the distinction
between solid, dashed, and unknown markings.

Classification is done on two different measurements, the
size of the lane markings and the distance between them.
Based on the country and road type retrieved from the OSM
data, the lane marking specifications are adjusted.

Through the analysis of the cluster size in Sec. III-D,
solid lanes are detected with high confidence. This is due
to the fact, that outliers tend to be only partial scans of
markings, which would result in shorter clusters than the
defined threshold. On the other hand, these outliers can lead
to non-detection of solid lanes.

As a straightforward distinction between solid and dashed
lane markings, the size of the cluster is taken first into
account. To identify dashed markings, the size of more than
50% of the lane markings connected must be in between
± 10% of the regulatory size. Evaluations of our data show,
that in the case of partial scans of solid lane markings, the
sizes of the clusters vary widely and the condition fails.

For lane marking stripes, where the previous classification
was not able to distinguish between dashed or solid, the
distance between the markings is evaluated.

Due to the distance-based resolution of LiDAR sensors,
markings farther from the sensor might be undersampled and
the resulting cluster size is underestimated, but the cluster’s
overall position remains accurate. To exploit these phenom-
ena, the average distance between markings is analyzed
when more than four are available. If the average distance
between marking centers is within ± 10% of the legal
requirements, the respective stripe is considered dashed.
When the average distance is shorter than a single line
marks’ required length, the markings are classified as solid.

Cases that could not be matched or didn’t meet the
required minimum number of markings are defined as class
unknown. Although their type is unknown, the extracted
markings are used in further steps after matching the ex-
tracted lanes with OSM information.

Fig. 3. Overview over lane generation and positional calculation. Lane
marking point clouds are displayed in blue, and respective estimated centers
in orange. The directional vectors are shown in shades of green. Based on
the expected number of lanes from OpenStreetMap, the position of the
resulting reference line, displayed in purple, is calculated.

G. Calculation of Reference Line

The primary factor for the quality of an OpenDRIVE file
is the accuracy of the reference line [23].

Position and calculation of the reference line in the
geometry depends on the road type and country, which can
be adjusted based on the OSM information described in
Sec. III-A. Since this enables the use of various road types,
we focus on German highways for better comprehension.

The proposed generation of the reference line is based on
multiple steps. First, matching the extracted lane information
with the information gathered from OSM. Second, estimat-
ing the offset of these lanes to the planned reference line
position. Third, the calculation of the reference line, based
on the extracted lane markings and estimated offset. Finally,
the export of OpenDRIVE geometric elements.

For German highways, the position of the reference line
is set to the middle of the left lane. This is because left-
side highway exits are a rare case in Germany and therefore
enable a unified handling of entry and exit lane sections.

The fusion of the known number of lanes, the type of
road, the regulatory requirements for lane markings, and
the width of the lane, allows the estimation of the offset
of the extracted lane markings to the reference line. In the
example case of a German highway, shown in Fig. 3, it is
known from OSM that this segment consists of three lanes.
Further regulations specify that highway road boundaries are
required to be marked with solid markings. If two parallel
dashed lane markings were extracted from the LiDAR data,
it can be assumed that these mark the boundaries of the
middle lane. Based on this conclusion and the known lane
width, the offset to the reference line can be calculated.

While this example is trivial, complexity increases with
a higher number of lanes and the existence of emergency
shoulder lanes. Moreover, the solution relies on the lanes
extracted and classified from the real data, which is why we
base the subsequent explanation on the detection results.

In the simplest case, one or more solid lanes are extracted
in the segment. As regulations stipulate solid marking on the
road boundaries, these can be matched between left and right
boundary depending on their position relative to the segment
origin. If only dashed lane markings are detected, they can
be matched similarly, as long as the number of detected



Fig. 4. Comparison of Google Maps satellite imagery against our generated
OpenDRIVE example. The main highway is based on the calculation of the
reference line, while the off- and on-ramp are derived from OpenStreetMap.

markings equals the number of expected dashed markings.
Since with a higher number of lanes, the result can be

ambiguous, we utilize the relative position of the extracted
lanes in the point cloud. To achieve a more accurate match,
the point cloud generated in Sec. III-C is cropped based on
the extracted lane markings. For each lane marking, only
points are kept with a distance lower than the maximum
distance to the road boundary. The union of these points
is used to match the lanes based on the estimated distance
towards the road boundary. This methodology is also used
in the case where no lane could be classified.

The generation of the reference line makes use of all
extracted lane markings. For each lane marking the normal
vector towards the targeted reference line position is cal-
culated. Based on the previously assigned offset, a point on
the normal vector is created. This results in a high-resolution
reference line, including all available marking information.

H. Export of OpenDRIVE

While the previous steps can be processed independently
from one another, for the export of the OpenDRIVE consec-
utive segments are needed. The individual segments are col-
lected and sorted according to timestamps and OSM relation.
Segments without a result from previous steps are collected
separately for manual quality control and adjustment.

To obtain a continuous reference line, we reprocess it to
avoid geometric leaps and kinks [23]. Since our processing
is based on individual lane markings, the segment split
described in III-B can fall between dashed markings. With-
out correction, this would lead to OpenDRIVE segments
with gaps equal to the space between line markings. While
correct on a measurement level, the OpenDRIVE standard
stipulates a continuous description without gaps. To fulfill
this requirement, the starting point of the successor element
is added as the endpoint of the current segment reference
line. This process is repeated on all elements and further en-
ables automated quality control. If the lateral offset between
reference lines exceeds a certain threshold these segments
are flagged for manual review.

Exporting a single OpenDRIVE road element per gener-
ated segment leads to a high number of roads with equal
information. To reduce this number, we follow the OSM
structure and create a single OpenDRIVE road per OSM
way, with segments describing the geometry of the road.

For the generation of complex geometries from measure-
ment data, the OpenDRIVE standard recommends the use

TABLE I
FOR ACCURACY WE COMPARE AGAINST PEGASUS [24] HD MAPS AND

FOR REPRODUCIBILITY AGAINST OUR METHODOLOGY.

agst. PEGASUS HD agst. self (ours)

RMSE 0.337 m 0.274 m

avg. distance 0.243 m 0.213 m

std. deviation σ 0.201 m 0.166 m

eval. length 44.8 km 30.6 km

of parametric cubic curves [17]. As described in Sec. II-
B, it is important to prevent geometric leaps and kinks in
the final OpenDRIVE map. Following [9], we introduce
an importance weighting for fitting the parametric curves
through the raw reference line. As the start and end points
between the segments have been aligned in the previous step,
we assign higher weights to these, resulting in a closer fit
of the curve and therefore a reduction of geometric leaps.

Road elevation and super-elevation are added as additional
cubic curves along the fitted reference line. These are also
calculated for each segment separately directly from the
extracted reference line markers, omitting the previously
described weighting.

For each OSM way, an OpenDRIVE road element is
generated, where the calculated cubic curves of the segments
describe the geometry. Information about the size of the
lanes and their type is added by combining the OSM
information with regulatory information. Through the OSM-
derived order of the roads, the respective predecessor and
successor attributes are set, as well as lane links are set up.

If the number of lanes changes from one element to
another, two separate lane sections are set up, which fade
in or fade out the changing lane.

Entry and exit lanes represent a special case. As their
existence is known from OSM, an OpenDRIVE junction
is generated. This contains the respective predecessor and
successor roads extracted. To comprehensively model these
junctions a placeholder road is created as a ramp. For this,
the starting position of the element is estimated through the
calculated reference line, the known road width, and the
size of the ramp. On the approximated starting position of
the ramp a simple new road object is created, described by
an OpenDRIVE spiral geometry. The ramp is added to the
junction and lanes are assigned the correct types and links.

IV. RESULT AND DISCUSSION

In this section, we compare the results of the generated
OpenDRIVE files quantitatively against other maps and eval-
uate their quality by simulating an original driving scenario.

A. Quantitative Analysis

For a comprehensive quantitative evaluation, we examine
three aspects. As our main focus is to enable industrial-
scale road generation, we present an overview of the success
rate and the processing time. To evaluate the accuracy,
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Fig. 5. Excerpts of one drive for qualitative comparison. The respective camera frame and LiDAR scan from the original recording are referenced in
each image. The resulting OpenDRIVE is displayed as esmini [4] rendering, including traffic participants from generated OpenSCENARIO [25].

we compare our generated OpenDRIVE files with publicly
available HD OpenDRIVE maps, and subsequently, analyze
the reproducibility of the accuracy.

Across 286 km of processed data, our proposed method
successfully extracts reference line information and converts
it into OpenDRIVE for 91.6% of the total distance. Exam-
ination of the failed segments reveals, that most are due
to erroneous scans of lane marks or segments lacking lane
markings. As segment processing can be parallelized on a
large scale, we evaluate the processing time per segment.
Including the map-matching and export into OpenDRIVE,
the processing time per segment is approximately equal to
the real-world driving time for that particular segment.

The OpenDRIVE standard provides a multitude of ways
to describe road layouts, leading to equivalent roads with
identical or near-identical geometry but different parameters
[9]. One reason is the possibility of offsetting lanes and
markings along the reference line on multiple occasions.
Although beneficial from a user perspective, this introduces
different challenges for the comparison of road models.
Therefore, recent research performs the comparison on the
resulting geometry rather than of the parameters describing
them. Based on these aspects, we follow the evaluation
proposed by [9], [15]. Similarly, the comparison is done by
sampling uniformly spaced points of each generated road
reference line and evaluating the Root Mean Square Error
(RMSE), average distance, and standard deviation (σ).

Since the related work presented in Sec. II-A relies on
vehicle or sensor characteristics, a direct comparison is not
possible. To achieve a reliable accuracy metric, we therefore
compare against HD maps from the PEGASUS project [24].

As our proposal leverages the feature extraction and lane
generation of [9], we provide evidence of similar accuracy.
The input data consists of the same drive recordings as in
[9]. These consist of four different recordings, taken over a
period of 8 weeks, following the same part of the German
highway A8. The overall distance on the part accumulates
to a total of 44.8 km, including 31 cut-in scenarios and 29
ego vehicle lane changes. The ego vehicle’s speed varies
between 80 and 140 km/h, averaging 116 km/h, and the
weather conditions range from sunny to mildly rainy.

The results of the comparison between the generated 44.8
km of OpenDRIVE files against the PEGASUS OpenDRIVE
files are shown in Tab.I. Our method achieves an average
nearest neighbor distance of 0.243 m, an σ of 0.201 m, and

an RMSE of 0.337 m. In accordance with [9], our results
fulfill the requirements of the Taiwan HD map standards
[26], making our result an HD map as well. Further, the
results show that our approach incorporates the accuracy
of the lane estimation while providing additional benefits
for large-scale adaption. Moreover, our results demonstrate
that our proposed reference line position estimation and
calculation provide stable results.

For an industrial use case, the reproducibility of the results
is also an important factor. For the evaluation, one of the
recording drives is chosen randomly as ground truth, which
the remaining three are compared against. This yields an
average distance of 0.213 m, with an σ of 0.166 m and
RMSE of 0.274 m. The observed offsets hereby originate
from different factors along the methodology. As initially
mentioned, we only introduce moderate requirements on the
calibration and offsets in the recorded data. Consequently,
map generation is influenced by calibration errors, GNSS
inconsistencies, the alignment of geo-references, and offsets
in the geometry fitting. Despite these offsets, the findings
demonstrate that our approach consistently produces reliable
maps, across diverse traffic scenarios and driving conditions.

B. Qualitative Analysis

To test the consistency of the generated OpenDRIVE
in simulating a real-world driving scenario, we generate
an additional OpenSCENARIO [25] file. Information about
traffic participants is hereby obtained from the series sensors
of the ego vehicle. To obtain the needed unified coordinate
system, these are transformed from the vehicle coordinate
system into the global through leveraging the same trans-
verse Mercator projection as described in Sec. III-C.

Excerpts from the corresponding esmini [4] rendering of
the generated files are displayed in Fig. 5. The full video
of the drive comparison is available on our data exchange3.
The presented visualization demonstrates the usability of our
approach for the derivation of driving scenarios. Even in
complex situations with a high number of vehicles, e.g. in
Fig. 1, traffic participants are accurately placed on each lane
and within each lane. Observed maneuvers, like cut-in and
cut-out, are replicated correctly in the simulation. Fig. 5a,5b
highlight the lateral accuracy of our approach. The first

3https://dataexchange.porsche-engineering.de/wl/
?id=Duoz69wGMqdyo2yGGsgyTJTXalxGTLzb
Password: IEEE-IV24

https://dataexchange.porsche-engineering.de/wl/?id=Duoz69wGMqdyo2yGGsgyTJTXalxGTLzb
https://dataexchange.porsche-engineering.de/wl/?id=Duoz69wGMqdyo2yGGsgyTJTXalxGTLzb


shows the target vehicle on the far right of the respective
lane, consistent with the input data. Likewise, the second
example shows similar for the ego vehicle lane change.

This is enabled through the close-to-real shape of the
generated road representation. Despite the LiDAR FoV being
occluded to a high degree, our approach is able to reconstruct
a realistic road representation, as for example in Fig. 5c.
Also, the examples demonstrate the effectiveness of the
OSM data integration, as entry and exit lanes are placed
correctly on the segment. This allows a better understanding
of lane change behavior in future work.

Given that all vehicles in the simulation are positioned
relative to the GNSS with an accuracy of ±5 cm we conclude
that the road has a high degree of realism. Even in situations
where the GNSS has a higher offset, e.g., through loss of
GNSS signal, our method is capable of accurately inferring
the road structure and displays a smooth and homogeneous
transition between geometric elements.

V. CONCLUSION AND FUTURE WORK

Through the importance of road networks for highly
automated driving functions and their evaluation, research on
the creation of such has seen considerable interest over the
last few years. In this paper, we proposed an approach for the
generation of high-resolution road representation from real-
world test drives. In contrast to previous research, our focus
lies not only on the accuracy of the method but more on
the scalability for multiple hundred kilometers. Leveraging
sparse information from OpenStreetMap, the original test
drive is divided into road segments. For each segment,
the sparse LiDAR data is accumulated and through the
extraction of lane markings, the reference line is estimated.
To achieve the final OpenDRIVE format, the geometry of
the individual segment is created, together with entry/exit
lanes, and the relations, such as junctions, are set. The
segment-wise approach hereby offers greater flexibility than
previous methods. Besides the scalable parallel processing of
the segments, these can further be modified, corrected, and
stored. Even in cases where the processing for a segment
does not succeed, only the respective segment is affected.

Furthermore, we could show that the algorithm’s results
fulfill the requirements for HD map standards and driving
function simulation, which could be shown through quantita-
tive and qualitative metrics. The resimulation of the input test
drives shows the accurate placement of traffic participants
close to reality, even at ego lane changes.
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