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Kalle Åström3 Michael Felsberg2 Christoffer Petersson1
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Figure 1. The core idea in this work is to leverage NeRFs to realistically simulate many safety-critical scenarios from a sequence of real-
world data. Here we show the original scenario, followed by examples of our three types of collision scenarios: stationary, frontal, and
side. The inserted safety-critical actor has been highlighted for illustration purposes. We can generate hundreds of unique scenarios from
each log by selecting different actors, jittering their trajectories, and choosing different starting conditions for the ego vehicle. Note that
scenarios are not pre-generated, but rather obtained by iteratively generating new images, computing a plan, and acting upon said plan.

Abstract

We present a versatile NeRF-based simulator for testing
autonomous driving (AD) software systems, designed with
a focus on sensor-realistic closed-loop evaluation and the
creation of safety-critical scenarios. The simulator learns
from sequences of real-world driving sensor data and en-
ables reconfigurations and renderings of new, unseen sce-
narios. In this work, we use our simulator to test the re-
sponses of AD models to safety-critical scenarios inspired
by the European New Car Assessment Programme (Euro
NCAP). Our evaluation reveals that, while state-of-the-art
end-to-end planners excel in nominal driving scenarios in
an open-loop setting, they exhibit critical flaws when navi-
gating our safety-critical scenarios in a closed-loop setting.
This highlights the need for advancements in the safety and
real-world usability of end-to-end planners. By publicly re-
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leasing our simulator and scenarios as an easy-to-run eval-
uation suite, we invite the research community to validate
their AD models in controlled, yet highly configurable and
challenging sensor-realistic environments.

1. Introduction
Recent work on autonomous driving (AD) [6, 7] suggests
designing and training a holistic neural network for map-
ping sensor inputs directly to a planned trajectory. Com-
pared to prior work that used modular software stacks, en-
gineered interfaces between modules, or handcrafted rules,
this end-to-end approach has several advantages. First, as
the driving behavior is learned, the predicted trajectories are
expected to resemble how a typical human driver would act.
Second, the approach is scalable in the sense that more data
leads to more robust as well as generalizable driving per-
formance [1, 7] and in the sense that there is no need to
manually design intermediate interfaces or cost functions.
The neural network may be divided into modules, but the
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interfaces between them are learned in order to mitigate in-
formation loss.

Hu et al. [6] demonstrated that their end-to-end planner,
UniAD, performed well on the popular nuScenes [2] plan-
ning benchmark. This is an open-loop benchmark, where
the tested planner never influences the driving. Instead,
the plans are compared to the trajectory taken by the ve-
hicle during data collection and a score is computed based
on the similarity between the two. Codevilla et al. [3], as
well as Dauner et al. [4], shed some doubt about the cor-
relation between such an open-loop score and the actual
driving performance. This begs the question, how would
state-of-the-art end-to-end planners fare if their predicted
policy would be acted upon? Unlike regular planners that
can be evaluated in a closed-loop manner using straight-
forward object-level simulations, end-to-end planners re-
quire complex sensor simulations to accurately predict their
behavior in real-world scenarios. This introduces signifi-
cant challenges due to the complexity and computational
demands of high-fidelity sensor simulation. Moreover, the
nuScenes benchmark contains normal driving scenarios, in
which no collisions occur. It is unclear how state-of-the-art
end-to-end planners would perform in safety-critical sce-
narios, where a crash is likely unless swift corrective action
is undertaken.

In this work, we subject state-of-the-art end-to-end plan-
ners to closed-loop evaluation in safety-critical scenarios.
Given sensor data, planners predict a plan. The plan is then
executed under the constraints of a vehicle model in order
to propagate the state of the ego-vehicle forward in time.
Given the new state, we use recent advances in neural ren-
dering – NeRFs – to resolve the problem of generating re-
alistic sensor data. These three steps are then repeated until
either a crash occurs or we deem the scenario to be over.
By executing the predicted plan, we aim to reduce the gap
between model evaluation and deployment.

To generate safety-critical scenarios, we take inspiration
from the European New Car Assessment Protocol (Euro
NCAP) for collision avoidance [5]. This protocol comprises
several scenario types that have been identified as safety-
critical. These scenario types are rare, but are likely to lead
to a collision unless the planner properly deals with them.
We craft scenarios by altering recordings of scenes from
the nuScenes dataset [2]. We evaluate the driving quality by
whether there is a crash, and at what velocity that crash oc-
curs. Our benchmark should be viewed as a necessary but
not sufficient condition for high quality driving. To summa-
rize, our contributions are as follows:
1. We release an open source framework for photorealistic

closed-loop simulation for autonomous driving.
2. We construct safety-critical scenarios, inspired by the in-

dustry standard Euro NCAP, that cannot safely be col-
lected in the real world.
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Figure 2. Our closed-loop simulation engine comprises four parts.
First, given a driving log, a neural renderer (NeRF) provides
photo-realistic images given the ego-vehicle state. Second, an AD
model (e.g., the end-to-end planner UniAD [6]) uses these to pre-
dict a future ego-trajectory. Third, a controller estimates accelera-
tion and steering signals. Finally, a vehicle model propagates the
ego-vehicle state one step into the future. This process is then iter-
ated to achieve closed-loop simulation. Blue indicates simulator,
green indicates AD system.

3. Using the simulator and our scenarios, we design a novel
evaluation protocol that focuses on collisions rather than
displacement metrics.

4. We show that two SotA end-to-end planners fail severely
in our safety-critical scenarios despite accurately per-
ceiving the environment.

2. Method
Our end-to-end planning evaluation protocol comprises a
closed-loop-simulator (see Section 2.1) and a collision-
focused evaluation protocol (see Section 2.2).

2.1. Closed-loop Simulator

Our closed-loop simulator repeatedly performs four steps.
First, the neural renderer, trained on a log of real driving
data, generates photorealistic images given the ego-vehicle
state. Second, an AD model, such as an end-to-end planner,
predicts a future ego-vehicle trajectory given the rendered
camera input and the ego-vehicle state. Third, a controller
converts the planned trajectory to steering and acceleration
signals. Fourth, a vehicle model propagates the ego-state
forward in time given the control inputs. This procedure is
illustrated in Figure 2.

2.2. Evaluation

In contrast to common evaluation practices – i.e., averag-
ing performance across large-scale datasets – we instead
focus our evaluation on a small set of carefully designed
safety-critical scenarios. These scenarios have been crafted
such that any model that cannot successfully handle all of
them, should be considered unsafe. We have taken inspi-



(a) Stationary scenario. (b) Frontal scenario. (c) Side scenario.

Figure 3. Different scenario types used in the NeuroNCAP eval-
uation protocol. To increase the robustness of the test and allow
for multiple runs, we introduce small random perturbations to the
target actor.

ration from the industry standard Euro NCAP testing [5]
and define three types of scenarios, each characterized by
the behavior of the actor that we are about to collide with:
stationary, frontal, and side. The aim is to control the ego-
vehicle to avoid a collision with the target actor or at least
decrease the collision velocity. See Fig. 3 for an illustration
of each scenario type.

For each scenario type, we create multiple scenarios.
Each scenario is based on data collected from around 20
seconds of real-world driving. The ego-vehicle and target
actor states are initialized such that if current speeds and
steering angles are maintained, a collision will occur at ap-
proximately 4 seconds into the future. All non-stationary
actors are removed from the scene and we randomly select
one of these to be the target actor, taking into consideration
whether the actor has been observed sufficiently closely,
and under the necessary angles, to produce realistic render-
ings. As our renderer is limited to rigid actors, we exclude
pedestrians from this selection. Finally, we randomly jitter
the position, rotation, and velocity of the target actor within
scenario-specific intervals. During evaluation, we run each
scenario for a large number of runs (with a fixed random
seed) and compute average results.
NeuroNCAP score: For each scenario, a score is com-
puted. A full score is achieved only by completely avoiding
collision. Partial scores are awarded by reducing the impact
velocity. In spirit of the 5-star Euro NCAP rating system [5]
we compute the NeuroNCAP score (NNS) as

NNS =

{
5.0 if no collision
4.0 · max(0, 1− vi/vr) otherwise

, (1)

where vi is the impact speed as the magnitude of relative
velocity between ego-vehicle and colliding actor, and vr is
the reference impact speed that would occur if no action is
performed.

3. Experiments
First, we start by outlining the details of our experiments in
Sec. 3.1. Next, we show the quantitative results from our
NeuroNCAP evaluation along with some qualitative exam-
ples in Sec. 3.2.

3.1. Experimental Setting

Dataset: We use nuScenes [2] as it has received the most
widespread adaptation for end-to-end planning and features
rich urban environments. We choose 14 diverse sequences
from the validation set – deemed to be suitable based on
the behavior of agents present in the scene – to serve as the
basis for our safety-critical scenarios.
Scenarios: Each scenario is designed by hand, consider-
ing which actors are suitable for the given sequence, the
most reasonable collision trajectories, as well as defining al-
lowed ranges for the different kinds of randomization. Dur-
ing evaluation we run each scenario 100 times (with fixed
random seed) and average the results. In total we design 10
stationary, 5 side, and 5 frontal scenarios.
Neural renderer: As our renderer, we opt to use Neu-
RAD [8], a SotA neural renderer developed specifically
for autonomous driving and verified to work well with
nuScenes. As pose information in nuScenes is limited to
the bird’s eye view plane, we employ pose optimization to
recover the missing information. Finally, we adopt actor
flipping along the symmetry axis [9] to enable realistic ren-
dering of actors from all viewpoints.
AD models: We evaluate two current SotA end-to-end driv-
ing models, namely UniAD [6] and VAD [7], according to
our proposed evaluation protocol. In both cases, we make
use of the pre-trained weights made available by the au-
thors, trained on the same dataset, without any alterations
to the configuration of said models. Both of these models
consume 360° camera input, along with can-bus signals and
a high-level command: right, left, or straight, and output a
sequence of waypoints up to 3 seconds into the future.

One major difference between these two models is that
UniAD applies a collision-avoidance optimization post-
processing step to their predicted trajectory. The op-
timization is performed using a classical solver with a
cost-function based on predicted occupancy and the non-
optimized output trajectory. This optimization was shown
to drastically decrease the collision-rate when evaluated in
open loop, and we can now study it in the more interest-
ing closed-loop setting. To enable more directly compa-
rable analysis, we implement the same collision avoidance
optimization for VAD. However, as VAD does not directly
predict future occupancy, we rasterize their predicted fu-
ture objects and use this as the future occupancy. Note that
this approach possibly overestimates occupancy, as all fu-
ture modes are treated as equally likely.

For comparison we implement a naı̈ve baseline method
based on the perception outputs of UniAD/VAD. The plan-
ning logic is simply a constant velocity model unless we
observe an object in a corridor in front of the ego-vehicle,
in which case we perform a braking maneuver. The corridor
is defined as ±2 meters in the lateral direction and ranging
from 0 to 2vego meters in the longitudinal direction, i.e. we



brake if we have TTC < 2s with an object in front of us.

3.2. NeuroNCAP Results

We evaluate VAD [7] and UniAD [6], as well as the naı̈ve
baseline, on our safety-critical scenarios. We also evaluate
both methods with and without perception-based trajectory
post-processing. We report the NeuroNCAP score (1) and
collision rate per scenario type in Tab. 1. Note that the col-
lision rate is not averaged over time, but is defined as the
ratio of scenarios that passed without any collisions.

Surprisingly, we find that the plan predicted directly by
the network, i.e. without post-processing, is extremely un-
safe and crashes most of the time, even in the simple station-
ary scenarios. For reference, the naı̈ve baseline achieves
an almost perfect score in the stationary setting, showing
both that the perception of these models is not at fault, and
that very simple logic can avoid collision. Trajectory post-
processing further confirms this, reducing the collision rate
dramatically in the stationary setting. Side and frontal sce-
narios are more difficult to handle with this rule-based logic,
and the baseline crashes almost 100% of the time, albeit
with a lower impact speed (thus scoring higher). Surpris-
ingly, the end-to-end methods again show almost no reac-
tion to the impending collision, with 98-99% collision rate
in frontal scenarios. Trajectory post-processing improves
safety somewhat, but is not nearly as effective as in the sta-
tionary setting.

We also present some qualitative examples in Fig. 4. Es-
pecially Fig. 4b and Fig. 4c are interesting as these are two
crash scenarios where it is apparent that the models are driv-
ing quite recklessly. Upon inspecting the auxilliary model
outputs, which contain detected objects, we find that in both
these cases (and most others) the model consistently de-
tected the safety-critical actor but failed to take action.

We believe that these results highlight a drastic flaw in
the design or training of current end-to-end autonomous
driving systems. Reducing the contradictions between the
predicted plan and the auxiliary outputs is a promising area
of improvement for future end-to-end planners. Notably,
VAD actually attempts to address this by using multiple
loss terms that directly encourage the model to output a plan
that is consistent with its perception and prediction outputs.
However, as our experiments show, this alignment step does
not generalize well, at least not to this type of safety-critical
scenario.

4. Conclusion
In conclusion, our simulation environment offers a novel
approach for evaluating the safety of autonomous driving
models, drawing on real-world sensor data and Euro NCAP-
inspired safety protocols. Through the NeuroNCAP frame-
work, which includes stationary, frontal, and side collision
scenarios, we have exposed significant vulnerabilities in

NeuroNCAP Score ↑ Collision rate (%) ↓
Model Post-proc. Avg. Stat. Frontal Side Avg. Stat. Frontal Side
Base-U - 2.65 4.72 1.80 1.43 69.90 9.60 100.00 100.00
Base-V - 2.67 4.82 1.85 1.32 68.70 6.00 100.00 100.00
UniAD x 0.73 0.84 0.10 1.26 88.60 87.80 98.40 79.60
VAD† x 0.66 0.47 0.04 1.45 92.50 96.20 99.60 81.60
UniAD† ✓ 1.84 3.54 0.66 1.33 68.70 34.80 92.40 78.80
VAD ✓ 2.75 3.77 1.44 3.05 50.70 28.70 73.60 49.80

Table 1. NeuroNCAP evaluation results. End-to-end planners fail
in novel, critical scenarios. Trajectory post-processing, as pro-
posed in UniAD, helps significantly. The naı̈ve baseline uses the
perception of either UniAD (U) or VAD (V) to determine braking.
†Corresponds to the model’s original setting.

(a) stationary (UniAD) (b) side (VAD) (c) frontal (UniAD)

Figure 4. Qualitative examples of three NeuroNCAP scenarios,
with projected planning output (green, before controller) and the
actual designed future trajectory of the target actor (blue). In some
cases the planner reacts successfully (a), does not react at all (b),
or attempts to avoid collision but fails (c). Our simulator can ac-
curately render complex actors (a), but sometimes exhibits unreal-
istic artifacts for very close objects (b) and (c).

current SotA planners. These findings not only underline
the urgent need for advancements in the safety of end-to-
end planners but also suggest promising paths for future re-
search. By making our evaluation suite openly available to
the wider research community, we aim to catalyze progress
towards safer autonomous driving. Looking ahead, we an-
ticipate evolving the suite to tackle a wider range of scenar-
ios, integrating more refined vehicle models, and employing
advanced neural rendering techniques, thereby setting new
benchmarks for safety evaluation.
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